
ZendDiff: Differential Testing of PHP Interpreter
Yuancheng Jiang∗§, Jianing Wang∗†§, Qiange Liu‡, Yeqi Fu∗, Jian Mao‡, Roland H. C. Yap∗, Zhenkai Liang∗

∗School of Computing, National University of Singapore, Singapore
{yuancheng, yeqi.fu, ryap, liangzk}@comp.nus.edu.sg

†Shandong University, China
jianingwang@mail.sdu.edu.cn

‡Beihang University, China
{liuqiangebuaa, maojian}@buaa.edu.cn

Abstract—The PHP interpreter, powering over 70% of web-
sites on the internet, plays a crucial role in web development.
Existing approaches to finding bugs in PHP primarily focus on
detecting explicit security issues through crashes or sanitizer-
based oracles, but fail to identify logic bugs that can silently lead
to incorrect results. We observe that the introduction of Just-In-
Time (JIT) compilation mode in PHP presents an opportunity for
differential testing, as it provides an alternative implementation
of the same language specification. We propose, ZendDiff, an
automatic differential testing framework that effectively detects
logic bugs in the PHP interpreter by comparing JIT and non-
JIT execution results. Our differential testing incorporates three
techniques: program state probing for fine-grained execution
state comparison, JIT-aware program mutation to sufficiently
exercise JIT functionality, and dual verification to handle non-
deterministic behaviors in PHP programs. Our experimental
results demonstrate that ZendDiff outperforms the official test
suite used in PHP’s continuous integration, achieving higher code
coverage and executing more Zend opcodes. Through ablation
studies, we validate the effectiveness of these techniques. To date,
ZendDiff has identified 51 previously unknown logic bugs in
the PHP interpreter, with 37 already fixed and 3 confirmed by
the PHP maintainers. ZendDiff has been acknowledged by the
PHP community and offers a practical tool for automatically
discovering logic bugs in the PHP interpreter.

Index Terms—differential testing, just-in-time compilation,
logic bug detection, PHP interpreter, software testing

I. INTRODUCTION

PHP (Hypertext Preprocessor) is one of the most widely used
server-side scripting languages for web development, powering
over 70% of websites on the internet [1, 2]. PHP offers a wide
range of functionalities for web developers, such as database
access, session management, and file system operations. The
official PHP interpreter features a substantial codebase with
over a million lines of code, mainly implemented in C. It
is well known that complex software is prone to bugs and
vulnerabilities. Given its critical role in web development,
detecting bugs in the PHP interpreter is crucial to ensure the
security and reliability of web applications.

Research efforts [3, 4, 5, 6, 7, 8] have been devoted to
uncovering various bugs in the PHP interpreter. In particular,
the proposed approaches mainly rely on fuzzing techniques
dedicated to optimizing input generation for broad testing

§Co-primary authors. †Corresponding author.

coverage. Most of the above works leverage grammar-guided
or semantic-guided test case generation. For example, Flow-
Fusion [7], utilizes dataflow-guided test case fusion techniques
to generate semantic test cases. We highlight that existing
approaches mainly focus on finding explicit security issues,
such as crashes or memory errors. They do so by leverag-
ing crashes or sanitizers as weak test oracles. Despite the
effectiveness of these approaches in identifying security issues,
they are not designed for detecting logic bugs. Logic bugs are
dangerous as they can silently lead to incorrect results, thereby
compromising the reliability of the PHP interpreter.

Finding logic bugs in the PHP interpreter is challenging due
to the lack of an effective test oracle. As logic bugs manifest
as incorrect computation results rather than explicit issues, like
crashes or memory errors, they require a more sophisticated
test oracle to detect. Metamorphic testing [9, 10, 11, 12, 13,
14, 15, 16] and differential testing [17, 18, 19, 20, 21, 22,
23, 24, 25, 26] are two general approaches which can be
leveraged to create effective test oracles to detect logic bugs.
However, they face the following challenges when applied
to the PHP interpreter. For metamorphic testing, defining
metamorphic relations requires significant manual effort and
expert knowledge, which is neither automated nor scalable. For
differential testing, there is no good alternative implementation
of the PHP interpreter (HHVM [27] ended support for PHP on
2019 [28]). The situation is different with JavaScript, which
has multiple independent modern implementations (e.g., V8,
WebKit, Gecko).

We notice that starting with PHP 8.0, released in 2020, the
PHP interpreter ships with a just-in-time (JIT) compilation
mode designed to accelerate script execution [29]. Instead
of feeding bytecode through the Zend virtual machine, the
frequently called part (hot functions) of the program or
even the entire script can be translated into native machine
instructions and executed directly, to reduce interpretation
overhead [30]. Although JIT and non-JIT modes are both
required to implement the same PHP language specification,
they follow distinct execution paths. This implementation
diversity creates an ideal setting for differential testing: by
running the same PHP program in both modes and comparing
their observable results, any inconsistency signals a latent
miscomputation (i.e., a logic bug in the engine). Building on

prior work [31, 17, 32], we propose a new test oracle designed
specifically for detecting logic bugs in the PHP engine, which
flags inconsistencies between JIT-compiled and interpreter-
executed runs as potential defects. While differential testing is
a well-established paradigm, its application to a new domain
requires a tailored and practical oracle. However, several
obstacles prevent a naive implementation from being effective
in practice. We outline these challenges and motivate the
refinements necessary for a robust PHP-specific differential-
testing framework.

- Challenge C1: Inconsistency detection in the presence of
non-determinism. Program outputs can depend on inher-
ently non-deterministic factors (such as memory addresses,
thread scheduling, execution timing, or random number gen-
eration), so two correct runs can legitimately differ, which
then affects differential testing. To suppress these benign
inconsistencies, patching the engine [17, 33] or maintaining
an ad-hoc “allow lists” are feasible, but ensuring their
comprehensiveness is labor-intensive and inherently fragile.
Therefore, a principled and general-purpose mechanism
for tolerating non-deterministic behavior during differential
comparison is needed.

- Challenge C2: Exercising JIT functionality sufficiently.
The extent to which a PHP program actually triggers JIT
features largely determines how effective JIT-based testing
will be. Unlike V8’s automatic and tiered JIT optimization
strategy, the PHP engine provides fine-grained, operator-
visible controls, such as switching between function/tracing
modes, tuning hotness thresholds, and sizing the native-code
cache buffer. Consequently, merely toggling a JIT configu-
ration flag rarely exposes the full PHP’s optimizations.

- Challenge C3: Probing internal miscomputations. Logic
errors can lurk behind correct-looking outputs [17, 34]. For
example, the PHP JIT may compute an incorrect inter-
mediate value that is subsequently discarded, leaving the
program’s final result unaltered. A differential fuzzer will
miss such defects unless the affected state is explicitly
inspected. This requires us to capture execution state in a
fine-grained way, exposing these subtle discrepancies before
they surface in user-visible behavior.

To tackle the challenges mentioned above, we propose an
automatic differential testing framework, called ZendDiff,
for automatically discovering logic bugs in the PHP inter-
preter with three key techniques: program state probing, JIT-
aware program mutation, and dual verification. To reveal
internal miscomputations (C3), program state probing in-
jects lightweight probes into each candidate program, which
records additional program states (e.g., variable values, class
attributes). These states enable a more fine-grained comparison
between non-JIT and JIT executions, revealing silent logic
errors that would otherwise slip through. To exercise JIT
functionality sufficiently (C2), JIT-aware program mutation
applies a suite of tactics (tweaking configuration flags, inject-
ing loop nests, and restructuring functions) to raise execution
frequency and force compilation, thus triggering a broader

Listing 1: Unknown logic bug found by ZendDiff in Zend
<?php
$root = simplexml_load_string(’../></root>’);
$spattr = $root->child->attributes(’special-ns’);
var_dump(Dom\import_simplexml($spattr));

Non-JIT: Error.. Return value must be of type ..
JIT: object(Dom\Attr)#2 (22) { .. }

spectrum of JIT optimizations. To mitigate the impact of non-
deterministic behaviors (C1), dual verification executes each
test case twice under both execution modes. Specifically, it
first runs the original program P in interpreted mode and
its JIT-compiled counterpart Pjit, obtaining results R(P) and
R(Pjit). Then, it creates logically equivalent replicas P ′ and
P ′

jit and reruns them to collect R(P ′) and R(P ′
jit). Beyond

the naive oracle that flags discrepancies between R(P) and
R(Pjit), dual verification enforces consistency across repeated
runs: R(P) = R(P ′) and R(Pjit) = R(P ′

jit). Any test that fails
this criterion is considered non-deterministic and discarded.
This enhanced oracle significantly reduces false positives,
improving the reliability of bug reports.

Listing 1 presents an example of a previously unknown logic
bug found by ZendDiff. This logic bug is associated with the
Document Object Model (DOM) handling in the PHP inter-
preter. We observe that the result of non-JIT execution shows
an error with the return value of dom_import_simplexml().
However, the JIT execution inconsistently returns the value
normally, without errors. Our analysis indicates that a missed
type annotation in the function definition causes an unexpected
type error under non-JIT execution, thereby preventing the
interface from operating with DOMAttr variables. The PHP
developers quickly fixed this issue and clarified that the
behavior of non-JIT execution was unexpected. Notably, this
bug has persisted in the PHP interpreter for over four years.

We implement our framework with over 2,000 lines of
Python code. We conducted comprehensive experiments to
assess the effectiveness of our approach. ZendDiff detects
51 unique and previously unknown logic bugs in the PHP
engine, of which 37 have been fixed and 3 confirmed. We note
that these bugs cover both the non-JIT and JIT components of
the PHP engine. We compared the effectiveness of ZendDiff
against the official test suites. The results demonstrate that
ZendDiff not only detects more logic bugs but also increases
the diversity of executed Zend opcodes and achieves higher
code coverage. Furthermore, we conduct an ablation study to
showcase the contributions of each component. ZendDiff
has been acknowledged by the PHP developers. In summary,
we make the following contributions:
• We design an oracle for discovering logic bugs in the

PHP engine by identifying the execution inconsistencies
between non-JIT and JIT modes, combined with a novel dual
verification mechanism to minimize false positives from
non-deterministic behaviors.

• We present JIT-aware program mutation to sufficiently ex-
ercise PHP’s JIT functionality and program state probing
to collect fine-grained internal states, and further implement

Zend Virtual
Machine

PHP
Code

Opcache

JIT Buffer JIT
CompilerMachine

Code

CPU

Op codes

Fig. 1: Just-In-Time (JIT) Overview in the PHP Interpreter

the first automatic framework, ZendDiff1, for detecting
logic bugs in the PHP interpreter through differential testing.

• ZendDiff has identified 51 unknown logic bugs, with 37
fixes merged and 3 confirmations from PHP developers. Our
bug reports were positively received and acknowledged by
the developers.

II. BACKGROUND

PHP Interpreter and JIT Compilation. PHP is an inter-
preted language, with the underlying Zend Virtual Machine
for executing the PHP program at runtime. This interpreted
execution mode enables easier development but results in
slower execution. In contrast, Ahead-of-Time (AOT) compiled
languages, like C, require the code to be fully compiled into
machine code before execution, offering faster performance at
the cost of an extra compilation step. Just-In-Time (JIT) [30]
compilation stands in the middle ground of these two execution
modes. JIT compiles parts of the code “just in time” during
execution, rather than all at once beforehand.

PHP added JIT compilation in version 8.0. Figure 1 outlines
the PHP engine. The Opcache extension translates PHP
source into platform-agnostic “opcodes” and caches them in
memory. Without JIT, the Zend VM interprets these opcodes.
With JIT, it monitors the hot code paths frequently executed
by the Zend VM, then compiles them into optimized machine
code on the fly, storing them in a JIT buffer. The CPU then
executes the optimized machine code directly, bypassing the
need for interpretation by the VM.

In PHP, JIT compilation is configured via the php.ini
file with key settings, such as opcache.jit_buffer_
size, which specifies the memory allocation for native code
generation. The core setting of JIT is opache.jit, con-
sisting of four configurable options, denoted by four decimal
digits for CRTO: (i) C whether CPU-specific optimizations are
applied, with options to disable these optimizations or enable
advanced instruction sets like AVX. (ii) R defines the strategy
for register allocation, including no allocation, block-local
allocation, and global register allocation. (iii) T determines
the JIT trigger, which governs when code undergoes JIT com-
pilations. Options include compiling all functions upon script
load, triggering compilation on first execution, after profiling
specific requests, or dynamically during profiling and tracing,
etc. (iv) O indicates the optimization level, indicating the extent
and methodology of JIT compilation. It offers configurations
such as minimal JIT, type inference-based compilation, call
graph-based optimization [35], etc.

1ZendDiff is available at https://github.com/YuanchengJiang/ZendDiff.

Official PHP Test Suite. The PHP community maintains
an official test suite for automated continuous integration,
which helps uncover logic bugs and security vulnerabilities.
This suite comprises over 18,000 distinct test cases, each
designed to verify a broad range of code semantics with valid
syntax. These cases span more than 80 unique modules within
the interpreter and include additional security-focused cases
based on all known issues. Each test is a .phpt file split by
--SECTION-- markers; more than 30 section types exist [36].
Listing 2 shows an example that verifies the correctness of
DOM-related functions. Key sections include: (i) --TEST--

section for a brief description; (ii) --EXTENSIONS-- section
lists the required extensions; (iii) the --FILE-- section con-
tains the PHP program; and (iv) the --EXPECT-- section
specifies the expected results (a mismatch signals a bug).
Existing PHP Program Generator. While test program
generation is orthogonal to our approach, it remains a cru-
cial research challenge in the testing programming language
implementations. As the PHP program generator, ZendDiff
adopts FlowFusion [7], the state-of-the-art and only generator
built for PHP. FlowFusion aims to uncover memory errors
within the PHP interpreter through fuzzing. To better explore
the PHP execution space, it works by fusing official test-suite
cases at the data-flow level: it treats cases from the official
suite as seeds, interleaves their data flows, and produces new
programs that exercise new execution paths and have not been
previously explored.

III. APPROACH

We aim to detect logic bugs that produce incorrect computation
results in the PHP interpreter. Our key insight is to treat
PHP’s JIT compilation as a semantics-preserving alternative
execution implementation to the standard interpreter, enabling
differential testing. We introduce a PHP-specific differential-
testing oracle that runs each program in interpreter and JIT
modes and compares their observable results. Discrepancies
between the two executions indicate potential logic bugs,
allowing us to uncover subtle miscomputations that do not
manifest as explicit crashes or memory errors.

Listing 2: Example Test Case in the Official Test Suite
--TEST--
Delayed freeing comment node
--EXTENSIONS--
dom
--FILE--
<?php
$doc = new DOMDocument;
$comment = $doc->appendChild($doc->createElement(’

container’))
->appendChild($doc->createComment(’comment’));

echo $doc->saveXML(), "\n";
$comment->parentNode->remove();
echo $doc->saveXML(), "\n";
echo $doc->saveXML($comment), "\n";
var_dump($comment->parentNode);

?>
--EXPECT--
<?xml version="1.0"?>..<!--comment-->NULL

https://github.com/YuanchengJiang/ZendDiff

Program State
Probing

6

Test Case
Generation

1

…Test
Case

Test
Case

Test
Case

=

Dual Verification

Non-JIT
Result

JIT
Result

Non-JIT
Result’

= JIT
Result’

≠

4

2

Non-JIT
Test Case’

Non-JIT
Test Case

copy

JIT
Test Case’

JIT
Test Case

Bug
Report

JIT-Aware Program
Mutation 3

Test
Case

copy

Fig. 2: The Overview of ZendDiff’s Differential Testing Approach

We present ZendDiff, a differential testing approach
for detecting logic bugs in the PHP interpreter. Figure 2
illustrates the overall workflow of ZendDiff: Test Case
Generation (1) leverages an off-the-shelf test case generation
approach [7] to create a large and diverse corpus. Program
State Probing (2) injects probes into the generated cases
to capture fine-grained program states. These instrumented
test cases are then replicated into two groups: one group is
processed by JIT-Aware Program Mutation (3) to sufficiently
exercise JIT functionality of PHP engine, while the other group
acts as non-JIT cases. These two groups form test pairs, which
are then passed to the Dual Verification (4), which cross-
checks the outputs of the differential executions from both
groups to detect potential discrepancies. Finally, ZendDiff
generates bug reports upon detecting discrepancies in differ-
ential test results. Each bug report comprises the bug-inducing
test case, the observed unexpected result, the expected result,
and the reproducing configuration.

A. Differential Input Preparation

To generate unique and high-quality test cases for differential
testing, ZendDiff leverages an existing state-of-the-art PHP
test case generation technique, FlowFusion [7] (see Section II).
However, directly applying these cases to differential testing
does not work well because they often contain random and
unstable behaviors for fuzzing purposes, such as randomized
API invocations, variable accesses, and execution configu-
rations. Such random elements can lead to differences in
runtime behaviors, causing challenges for reliable differential
testing. Hence, ZendDiff performs a processing step to
stabilize such generated randomness. Specifically, ZendDiff
performs a lightweight code analysis to identify the declared
variables and explicitly specifies them in test cases. Similarly,
ZendDiff replaces the use of random API invocations with
specific API invocations to ensure stable and comparable
executions.

B. Program State Probing.

Motivation and Scope. Differential testing fundamentally
relies on comparing execution results across different testing
targets. However, relying solely on the program’s final output
can often be insufficient to expose underlying logical errors in
different execution modes. This limitation arises when some
key intermediate variables, which could potentially indicate

discrepancies, may be overwritten during program execution
or not reflected in the final output. Therefore, capturing fine-
grained program states throughout the execution is crucial
to enable effective comparison and increasing the likelihood
of identifying bugs. We empirically find that lightweight yet
informative profiling of state information in PHP includes (i)
the values bound to program variables after each definition-
use site, (ii) the text emitted through stdout, and (iii)
run-time diagnostics such as warnings and notices, whereas
deeper artifacts (e.g., reference-count deltas or allocator meta-
data) yield negligible new findings but markedly reduced
execution throughput. We therefore implement a lightweight
state-probing mechanism based on the above observations,
striking a practical balance between informative semantics and
performance overhead.
Lightweight Probe Injection. To expose intermediate states
without incurring whole-program rewriting, we perform a
lightweight single-pass static analysis. The analysis first marks
key probing points that may write to a variable or one of
its attributes. Then it injects probes for these marked points
to reveal their intermediate states, including their values and
class attributes. To reveal the deep states, each probes must (i)
reveal rich metadata—values, type and length, (ii) recursively
dump nested structures, arrays and objects.

C. JIT-Aware Program Mutation

As outlined in Section II, the PHP engine employs a variety
of heuristics to decide when and how to compile code just-
in-time—ranging from multiple trigger modes (the T-flags)
to iteration- and call-count thresholds and code-pattern con-
straints. The extent to which a test case exercises these heuris-
tics directly determines the effectiveness of differential testing.
Simply enabling “global” JIT compilation is insufficient: it
can bypass hot-function profiling and tracing optimizations we
wish to examine. To obtain a broad coverage of JIT behaviors,
we adopt three mutation strategies.
• Fine-Grained JIT Trigger Controls. PHP’s JIT supports

distinct modes (T = 0, 1, 2, 3, 5), each exercising different
code paths (compile-all, first-call, profile-compile, on-the-
fly hot, tracing). As such, we randomly vary the T-flag in
combination with other CRTO bits to cover each trigger
mode, and apply different strategies to it.

• Threshold-Dependent Activation. In PHP’s function JIT

mode, the engine compiles all functions at load time,
whereas in tracing JIT mode it waits until loops exceed
jit_hot_loop iterations and functions surpass jit_
hot_func calls. Therefore, test inputs need to drive
loops/functions across those thresholds; otherwise tracing
and profiling code paths remain inactive. However, it is
prohibitively expensive for large-scale differential testing, if
we repeatedly invoke the same loop or function to surpass
the default threshold. Instead, we mutate the input in two
ways: (i) wrap the original payload in an artificial hot loop
or dispatch function, and (ii) lower the threshold values
themselves. This lightweight transformation reliably triggers
the tracing without introducing excessive runtime overhead.

• Mutation of Opcache Configurations. PHP’s JIT behavior is
governed by various opcache settings [37]. We randomly
sample valid values and combine these settings to exercise
a wider range of JIT behaviors. For instance, we set an
undersized JIT buffer to test the behavior where early
regions in the buffer are evicted.

D. Differential Testing with Dual Verification

In differential testing, an identical input is expected to yield
consistent output within the same testing environment. How-
ever, this assumption does not always hold for PHP program
execution due to the presence of non-deterministic elements,
such as pseudo-random number generators and time-varying
functions. This non-determinism poses a significant challenge
in differential testing, as it can lead to a large number of false
positives and further obscure true discrepancies in the detec-
tion process. To address this challenge, ZendDiff introduces
a dual verification mechanism to minimize the impact of non-
deterministic behaviors, thereby enhancing the accuracy of
differential testing outcomes.
Common Non-Deterministic Behaviors. Common sources
that can lead to inconsistent outputs across multiple executions
include: (1) random number generators, which produce differ-
ent outputs based on seed values, (2) time-dependent functions,
which yield varying results based on system time, and (3)
environment-dependent variables, which introduce variability
based on external factors, such as memory usage, process
states, and system configurations.
Dual Verification. As shown in Algorithm 1, ZendDiff’s
dual verification mechanism aims to eliminate the impact of
non-deterministic behaviors. It takes as input the instrumented
PHP program P and Pjit obtained from the previous steps,
and outputs the test result as either Detected or Passed.
Specifically, the mechanism consists of the following steps.
First, ZendDiff checks the execution results of the non-JIT
and JIT programs, denoted as R(P) and R(Pjit), respectively.
If the results of the non-JIT and JIT executions are consistent,
ZendDiff concludes that no logic bugs are present (line 6-7).
Otherwise, ZendDiff proceeds to the next step. ZendDiff
then replicates the input cases as “check tests” (line 9-10).
Replication refers to another clone version of the input which
should have the same output. Then, it re-executes these test

Algorithm 1 Differential Testing with Dual Verification
1: Input: non-JIT program P , JIT program Pjit

2: Output: the test result Detected or Passed
3: function DUALVERIFICATION(P , Pjit)
4: let R(P) ← the execution result of program P
5: let R(Pjit) ← the execution result of program Pjit

6: if R(P) = R(Pjit) then
7: return Passed ▷ no bug detected if differential results are equal
8: else
9: let P ′ ← Replicate(P) ▷ clone of program P

10: let P ′
jit ← Replicate(Pjit) ▷ clone of program Pjit

11: let R(P ′) ← the execution result of program P ′

12: let R(P ′
jit) ← the execution result of program P ′

jit
13: if R(P ′) ̸= R(P) or R(P ′

jit) ̸= R(Pjit) then
14: return Passed ▷ ignore if the results are unstable
15: else
16: return Detected ▷ detected after dual verification
17: end if
18: end if
19: end function

cases in both non-JIT and JIT modes to obtain the corre-
sponding results (line 11-12). Finally, ZendDiff compares
the results of the check tests with the original test cases to
ensure consistency across different executions. If the results
of the check tests do not match those of the original test
cases, ZendDiff ignore them as non-deterministic behaviors
present (line 14). Otherwise, ZendDiff reports a logic bug,
as the discrepancy indicates an inconsistency in the PHP
interpreter’s execution behavior (line 15).

IV. IMPLEMENTATION

We developed our differential testing framework, ZendDiff,
with over 2,000 lines of Python code.

Processing Generated Test Cases. Original test cases gen-
erated by FlowFusion [7] often invoke dynamic introspection
APIs such as get_defined_functions() and get_
defined_vars(), which randomly access internal func-
tions and variables. While the use of randomness can be useful
for a fuzzer, it yields unstable and non-comparable executions
that undermine differential testing. ZendDiff refines these
cases by eliminating such random and unstable behaviors with
fixed targets to ensure reproducible results.

State Probes. Our probes internally invokes PHP’s built-in
var_dump() to serialize variables into a canonical string that
captures both type and value. When dealing with arrays and
objects, it recursively traverses nested elements, exposing the
full structure of multi-dimensional arrays and complex objects.
This detailed output is far more informative for debugging than
basic print utilities such as echo or print_r().

Bug Verifier and PHP Program Reducer. We use the re-
producing scripts from PHP official to verify detected logic
errors. We implemented our PHP program reducer using
delta debugging [38]. It systematically comments out specific
lines or groups of lines to determine whether the bug oracle
continues to trigger this issue. If the issue persists, those lines
are discarded, resulting in a reduced version of the program.
This process is repeated iteratively until no smaller reproducer
can be found. In practice, our reducer can reduce the test
program to ≈ 10% of its original size. Other tools like C-

Reduce [39] can be applied to further reduce the size.

V. EVALUATION

In this section, we evaluate ZendDiff by answering the
following research questions:
• RQ 1: Effectiveness on logic bug detection. How effec-

tively can ZendDiff uncover logic bugs in the PHP engine
via the proposed test oracle? Can ZendDiff discover logic
bugs in each execution mode? (Section V-A)

• RQ 2: Comparison with existing approaches. Relative to
prior baselines, how does ZendDiff improve the effective-
ness on logic bug detection? (Section V-B)

• RQ 3: Ablation study. To what extent do (i) state probing,
(ii) JIT-aware program mutation, and (iii) dual verification
contribute to ZendDiff’s effectiveness? (Section V-C)

PHP Settings. All experiments are conducted on the commit
(ce51bfac759dedac1537f4d5666dcd33fbc4a281) following the
PHP interpreter version (v8.3.8) available at the time of this
work. We compiled the PHP interpreter using clang with debug
symbols (sanitizers disabled). Detailed component options are
listed in our artifacts.
Evaluation Metrics. We evaluate and compare ZendDiff
with prior work using three well-defined metrics: (i) Number
of logic bugs. The logic bugs we detected manifest as discrep-
ancies between non-JIT and JIT execution results. To ensure
accuracy, we employ a deduplication process, where multiple
bugs identified with the same result are treated as duplicates
and counted only once. This metric serves as the primary
indicator of the detection capability and the practicality of
the testing techniques. (ii) Code coverage. Code coverage is
a widely adopted metric in evaluating fuzzing and testing
approaches [40, 41], as it provides a clear and quantifiable way
to evaluate which parts of the code have been executed during
tests. In particular, we report line code coverage using gcovr
tool [42], following the recommended configuration from the
official PHP Makefile. (iii) Zend opcodes diversity. This metric
emphasizes the ability to explore a wide range of opcode
executions. Similar to query plans in database system testing, a
broader exploration of Zend opcodes provides deeper insights
into the interpreter’s behavior and increases the likelihood of
discovering potential vulnerabilities.
Experimental Infrastructure. All experiments were con-
ducted on an AMD EPYC 7763 server (64 physical / 128
logical cores at 2.45 GHz, 512 GB RAM) running Ubuntu
22.04. By default, ZendDiff is designed to utilize a mod-
erate amount of computational resources, allocating 32 CPU
cores and up to 32 GB of RAM, which enables it to detect
various logic bugs within a 24-hour timeframe.

A. Discovering Previously Unknown Logic Bugs

To uncover previously unknown logic bugs, we intermittently
tested the latest PHP interpreter built from the official repos-
itory [43]. This testing was carried out over a four-month
period, following well-established evaluation methodologies
for automated bug-detection tools [41, 44]. To streamline the
analysis of complex test cases and facilitate pinpointing their

root causes, we employed delta debugging [38] to reduce
each case to its minimal and bug-inducing form. Furthermore,
we cross-checked the reduced test cases with existing issue
trackers to prevent the redundant submission of bug reports.
Results. Table I summarizes all confirmed or fixed logic bugs
detected by ZendDiff and verified through manual analysis.
The Engine column indicates the affected component: G# marks
JIT-only bugs, H# denotes non-JIT bugs, and represents bugs
impacting both (as confirmed by the official PHP core team).
This demonstrates that differential testing enables the JIT and
non-JIT subsystems to expose each other’s defects. The Bug
Location column lists the source file in which each bug was
detected. The Issue ID column gives the official issue tracking
number for each bug. The Status column indicates whether
each bug has been fixed (Fx) or confirmed and awaiting a
patch (Cf). The Fixes column reports patch size (lines added
and removed), and the Description column provides a concise
explanation of each bug.

In total, ZendDiff identified 51 previously unknown logic
bugs caused by inconsistencies between PHP’s JIT and non-
JIT execution modes. Out of these, the majority of bugs (37)
have already been fixed, 3 have been confirmed, 5 are marked
as duplicates, and 6 are categorized as expected. Specifically,
among the confirmed and fixed bugs, our testing revealed 34
bugs localized to the JIT compiler, 3 bugs in the non-JIT inter-
preter, and 3 bugs that impact both components, underscoring
the breadth of ZendDiff ’s differential-testing capability.
The Bug Location column in Table I further provides a detailed
breakdown of the specific source code files where we found
many of them are closely related to Zend engine or JIT
compilation. Totally, the identified bugs are distributed across
around 30 distinct files. To address these bugs, developers
introduced modifications spanning a total of 1,958 lines of
code (1,802 additions and 156 deletions).
Case Study. The remainder of this section highlights rep-
resentative bugs, analyzing their root causes and impacts.
Each case incorporates our observations and feedback from
the official PHP development team, offering a comprehensive
understanding of these issues.

Unexpected Null Value in JIT Mode. This Bug (ID: 21) per-
tains to an inconsistency in PHP’s session management, specif-
ically involving the session_set_cookie_params()
function. In JIT mode, this function unexpectedly returns
a NULL value, instead of the expected boolean value, as
illustrated in Listing 3. This issue is traced to a misplaced
conditional check that precedes the Zend Parse Parameters
(ZPP) validation and an incorrectly placed return statement.
In non-JIT mode, this misalignment leads to a fatal error when
the function’s return type does not conform to the expected
boolean type. However, in JIT mode, the function silently
returns NULL, resulting in inconsistent behavior and potentially
leading to unexpected outcomes in dependent operations. The
patch for this bug ensures that parameter validation occurs in
the correct order and explicitly returns a boolean value, with a
warning introduced to notify developers of incorrect behavior.

PHP Reflection Bug in Non-JIT Mode. This bug (ID: 07) oc-

TABLE I: Confirmed and Fixed Logic Bugs Discovered by ZendDiff

ID Engine Bug Location Issue ID Status Fixes Description

01 G# zend jit.c, ... 15652 Fx +51 -5 Incorrect handling of dynamic property checks
02 G# ZendAccelerator.c 15657 Fx +35 -0 Conflict between memory protection and JIT compilation
03 G# zend jit.c 15658 Fx +21 -0 Missing implementation of ZEND_MATCH VM handler
04 G# ir cfg.c 15662 Fx +2 -1 Incorrect handling of an infinite loop with ENTRY instructions
05 G# zend jit.c 15820 Fx +1 -1 JIT misconfiguration caused by missing implementation
06 G# zend inference.c 15821 Fx +21 -1 Incorrect type inference for ZEND_FRAMELESS_ICALL_N
07 H# php reflection.c 15902 Fx +126 -5 Improper overwriting of constant values
08 G# ir cfg.c 15903 Fx +34 -0 Missing handling of IR_BB_LOOP_WITH_ENTRY flag
09 G# ir cfg.c 15909 Fx +17 -1 Improper processing in IR CFG construction
10 zend stack.c 15496 Cf - Improper output buffering
11 G# zend jit ir.c, ... 15972 Fx +42 -1 Improper arguments passing
12 G# zend jit x86.dasc, ... 15973 Fx +30 -2 Missing condition check when compiling op_array
13 G# zend execute.c 15981 Fx +34 -5 Incorrect complex handler call in minimal JIT
14 H# array.c 15982 Fx +14 -1 Missing dereference operation in ZVAL_COPY
15 G# zend jit ir.c 16009 Fx +46 -6 Incorrect updating of operand variables
16 G# zend jit.c, ... 16186 Fx +95 -0 Improper handling of the scope of op_arrays
17 G# zend execute.c 16321 Cf - Improper resource freeing after destructor
18 G# ir gcm.c 16355 Fx +19 -0 Incorrect handling of invariant instructions in GCM
19 inner outer html mixin.c 16356 Fx +142 -0 Incorrect serializing of sibling nodes of $outerHTML
20 G# zend jit.c 16358 Fx +341 -39 Missing handling of static method call
21 G# session.c 16385 Fx +22 -4 Missing implementation of debug arginfo checks
22 G# fiber.c 16388 Fx +13 -0 Incorrect cloning of instances of test class
23 G# zend jit.c 16393 Fx +28 -5 Incorrect handling of JIT triggers
24 G# ffi.c 16397 Fx +26 -1 Missing initialization of comparison handler
25 G# pass1.c 16408 Fx +25 -3 Incorrect handling of runtime warnings during optimization
26 H# php dom.stub.php 16473 Fx +16 -3 Incorrect implementation of dom_import_simplexml
27 zend compile.c 16509 Fx +22 -3 Incorrect line number information of lineno
28 G# zend jit ir.c 16572 Fx +26 -3 Missing argument validation when jumping to a basic block
29 H# zend vm execute.h 16574 Fx +28 -13 Incorrect changing of object pointer by get_method handler
30 G# zend jit trace.c 16770 Fx +42 -0 Incorrect JIT tracing type inferring
31 G# zend jit.c, ... 16879 Fx +50 -1 Incorrect JIT dead code handling
32 G# zend optimizer.c 17106 Fx +24 -0 Incorrect Zend ZEND_MATCH_ERROR optimization
33 G# zend jit trace.c 17140 Fx +34 -1 Missing handler for ZEND_FETCH_DIM_FUNC_ARG
34 G# zend inference.c 17144 Cf - Incorrect type inference of ZEND_FETCH_DIM_W
35 G# ir gcm.c 17190 Fx +47 -0 Incorrect JIT IR handling
36 G# sccp.c 17246 Fx +50 -2 Unexpected nested SHM protections
37 G# zend jit vm helpers.c, ... 17257 Fx +47 -4 Outdated opcode when IP is not stored
38 G# zend jit ir.c 17428 Fx +38 -3 Incorrect update on ZEND_DO_FCALL call level
39 G# ir fold.h 17430 Fx +25 -25 Unrobust folding of the index and ZVAL size
40 G# zend jit trace.c, ... 18262 Fx +168 -17 Unrobust type guard of JIT loop

Listing 3: Unexpected Null Value in JIT execution
<?php
var_dump(session_set_cookie_params(3600, "/foo"));
// Non-JIT: Fatal error .. Return value must be of

type bool ..
// JIT: NULL (Unexpected)

Listing 4: Unexpected Assertion in Non-JIT Execution
<?php
class C { public stdClass $a = FOO; }
$reflector = new ReflectionClass(C::class);
$c = $reflector->newLazyGhost(function () { });
function f() { define(’FOO’, new stdClass);} f();
try { var_dump($c->a); } catch (\Error $e) {}
$fusion = $reflector;
$s = ’C:11:"Object":’.strlen($p).’:{’.$fusion.’}’;

Non-JIT: Assertion ‘zval_get_type(&(*(value))) ==
11’ failed (Unexpected)

JIT: object(stdClass)#4 (0) {}

curs within PHP’s reflection functionality. It involves incorrect
handling of class property default values, as demonstrated in
Listing 4. Unlike typical cases where non-JIT results serve as
a reference to identify bugs in JIT executions, this bug occurs
solely in non-JIT mode, highlighting ZendDiff ’s capability
to reveal bugs across both non-JIT and JIT execution modes.

Listing 5: Incorrect Error Message Line Numbers in both Non-
JIT and JIT Executions
<?php
include __DIR__ . ’/test.inc’;
include __DIR__ . ’/test.inc’;

<?php
function test() { // line 3
echo ’foo’; // line 5

}
Non-JIT: Fatal error: Cannot redeclare function

test() .. in test.inc on line 4 (Incorrect)
JIT: Fatal error: Cannot redeclare function test()

.. in test.inc on line 8 (Incorrect)

Following this discovery, the development team determined
that the critical issue stemmed from an incorrect implemen-
tation of constant property initializers within the interpreter’s
reflection functionality.

Incorrect Results in both JIT and Non-JIT Modes. In the pre-
vious two test cases, we demonstrated ZendDiff’s capability
to identify bugs in either non-JIT or JIT execution modes. In
this case, we analyze a bug (ID: 27) that results in incorrect
and inconsistent outputs across both modes. A critical aspect
of programming in PHP is the accurate generation of warning
messages, which are essential in diagnosing potential issues
within the source code by indicating the precise line number

https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/15652
https://github.com/php/php-src/blob/master/ext/opcache/ZendAccelerator.c
https://github.com/php/php-src/issues/15657
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/15658
https://github.com/php/php-src/blob/master/ext/opcache/jit/ir/ir_cfg.c
https://github.com/php/php-src/issues/15662
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/15820
https://github.com/php/php-src/blob/master/Zend/Optimizer/zend_inference.c
https://github.com/php/php-src/issues/15821
https://github.com/php/php-src/blob/master/ext/reflection/php_reflection.c
https://github.com/php/php-src/issues/15902
https://github.com/php/php-src/blob/master/ext/opcache/jit/ir/ir_cfg.c
https://github.com/php/php-src/issues/15903
https://github.com/php/php-src/blob/master/ext/opcache/jit/ir/ir_cfg.c
https://github.com/php/php-src/issues/15909
https://github.com/php/php-src/blob/master/Zend/zend_stack.c
https://github.com/php/php-src/issues/15496
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_ir.c
https://github.com/php/php-src/issues/15972
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_x86.dasc
https://github.com/php/php-src/issues/15973
https://github.com/php/php-src/blob/master/Zend/zend_execute.c
https://github.com/php/php-src/issues/15981
https://github.com/php/php-src/blob/master/ext/standard/array.c
https://github.com/php/php-src/issues/15982
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_ir.c
https://github.com/php/php-src/issues/16009
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/16186
https://github.com/php/php-src/blob/master/Zend/zend_execute.c
https://github.com/php/php-src/issues/16321
https://github.com/php/php-src/blob/master/ext/opcache/jit/ir/ir_gcm.c
https://github.com/php/php-src/issues/16355
https://github.com/php/php-src/blob/master/ext/dom/inner_outer_html_mixin.c
https://github.com/php/php-src/issues/16356
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/16358
https://github.com/php/php-src/blob/master/ext/session/session.c
https://github.com/php/php-src/issues/16385
https://github.com/php/php-src/blob/master/ext/zend_test/fiber.c
https://github.com/php/php-src/issues/16388
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/16393
https://github.com/php/php-src/blob/master/ext/ffi/ffi.c
https://github.com/php/php-src/issues/16397
https://github.com/php/php-src/blob/master/Zend/Optimizer/pass1.c
https://github.com/php/php-src/issues/16408
https://github.com/php/php-src/blob/master/ext/dom/php_dom.stub.php
https://github.com/php/php-src/issues/16473
https://github.com/php/php-src/blob/master/Zend/zend_compile.c
https://github.com/php/php-src/issues/16509
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_ir.c
https://github.com/php/php-src/issues/16572
https://github.com/php/php-src/blob/master/Zend/zend_vm_execute.h
https://github.com/php/php-src/issues/16574
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_trace.c
https://github.com/php/php-src/issues/16770
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/16879
https://github.com/php/php-src/blob/master/Zend/Optimizer/zend_optimizer.c
https://github.com/php/php-src/issues/17106
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_trace.c
https://github.com/php/php-src/issues/17140
https://github.com/php/php-src/blob/master/Zend/Optimizer/zend_inference.c
https://github.com/php/php-src/issues/17144
https://github.com/php/php-src/blob/master/ext/opcache/jit/ir/ir_gcm.c
https://github.com/php/php-src/issues/17190
https://github.com/php/php-src/blob/master/Zend/Optimizer/sccp.c
https://github.com/php/php-src/issues/17246
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_vm_helpers.c
https://github.com/php/php-src/issues/17257
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_ir.c
https://github.com/php/php-src/issues/17428
https://github.com/php/php-src/blob/master/ext/opcache/jit/ir/ir_fold.h
https://github.com/php/php-src/issues/17430
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit_trace.c
https://github.com/php/php-src/issues/18262

Listing 6: Unexpected JIT Error Missed by FlowFusion
<?php
function dumpType(ReflectionType $rt) {

var_dump($rt::class); dumpType(null); }
function test1(): int { }
dumpType((new ReflectionFunction(’test1’))->
getReturnType());

Non-JIT result: Fatal error: .. Argument #1 ($rt)
must be of type ReflectionType, null given

JIT result: Fatal error: Uncaught TypeError: Cannot
use ‘‘::class’’ on null (unexpected)

associated with the root cause. However, inaccuracies in the
reported line number can significantly diminish the diagnostic
value of these warnings. As illustrated in Listing 5, this bug
leads to erroneous warning line numbers being produced by
both non-JIT and JIT execution modes. The misalignment
of line numbers not only introduces inconsistencies but also
hampers developers’ ability to effectively trace and rectify
source code issues. This bug was identified through our
approach and acknowledged by the development team. They
traced the root cause to an incorrect usage of the line number
from the first instruction in a function, rather than from the
actual start of the function itself.

B. Improved Effectiveness of ZendDiff

We first evaluate ZendDiff’s improved effectiveness through
a comparison with FlowFusion [7], the state-of-the-art PHP-
specific fuzzer. Our results show that ZendDiff is capable of
uncovering previously undetected logic bugs that FlowFusion
fails to detect. Then, to further assess the enhanced capability
of ZendDiff ’s test oracle, we compare its results against
the official PHP test suite.
Comparison with FlowFusion. In principle, ZendDiff
provides a complementary oracle for logic bugs compared
with the memory/crash oracle typically used in fuzzers. For
instance, as the FlowFusion fuzzer relies on memory errors as
the bug detection oracle, it does not deal with logic bugs. Eval-
uations show ZendDiff and FlowFusion achieve comparable
code coverage. However, coverage does not directly translate
into bug-finding effectiveness. Without a robust oracle for
logic bugs, FlowFusion does not detect the bugs found here.

We illustrate with two representative logic bugs discovered
by ZendDiff (one in non-JIT mode and another in JIT
mode) where the PHP engine inconsistently reports diagnostic
messages, which are essential for effective debugging and
developer productivity. However, conventional fuzzers often
overlook issues in such diagnostic messages, as it is difficult
to assess their correctness using crash-based fuzzing oracles.

The first bug (ID: 28) involves an unexpected discrepancy
in the behavior of the dumpType function under JIT execution,
as shown in Listing 6. This issue stems from a logic flaw when
handling recursive calls with invalid arguments. Specifically,
the dumpType function is designed to accept a ReflectionType
argument. However, a type mismatch arises when null is
passed in a recursive call, triggering an argument validation
error due to the unexpected type.

Listing 7 presents another bug (ID: 29), discovered by

Listing 7: Unexpected non-JIT Error Missed by FlowFusion
<?php
$i = new ArrayIterator(array(1,1,1,1,1));
$i = new CachingIterator($i,CachingIterator::

FULL_CACHE);
$fusion = $i; $fusion->doesnotexist("x");

Non-JIT: Fatal error: Uncaught Error: Call to
undefined method ArrayIterator::load()
(Unexpected)

JIT: Fatal error: Uncaught Error: Call to undefined
method CachingIterator::load()

ZendDiff in non-JIT execution mode. This bug manifests
as incorrect diagnostic output for an “undefined method”
error. In this case, the error message erroneously references
a method associated with the ArrayIterator class, despite the
variable having already been updated to reference a new
class, CachingIterator. The root cause is that the non-JIT
interpreter fails to correctly reflect the variable update in its
error reporting, misleading developers during debugging.

These examples highlight ZendDiff ’s ability to detect
subtle, non-crashing logic bugs that are easily missed by
existing fuzzers like FlowFusion.
Comparison with the Official PHP Test Suite. As described
in Section II, the official test suite includes a substantial
collection of well-maintained test cases with expected outputs,
comprising over 18,000 distinct cases. We evaluated the im-
proved effectiveness of our differential testing approach based
on two key criteria: (i) covering a greater number of unique
opcodes, and (ii) achieving higher code coverage.
More unique DynASM opcodes covered. DynASM [45] is
a dynamic assembler used in the PHP interpreter for JIT
compilation or code generation on the fly. Counting the
unique patterns of DynASM opcodes that have been executed
can reflect the coverage of fuzz testing approaches. We use
the configuration opcache.opt_debug_level as suggested
on the official page[37]. We set this value to 0x10000 to
dump opcodes as the compiler produced them before any
optimization in non-JIT executions and to 0x20000 output
optimized codes in JIT executions. We patch the official tests
and ZendDiff by adding this specific configuration and
collect unique opcode patterns within 24 hours.

We analyze the unique single DynASM opcode operands,
as well as the unique pairs of adjacent DynASM opcodes, to
highlight the improved effectiveness. DynASM opcode pairs
represent all unique combinations of two consecutive opcodes.
A higher count of executed operands or pairs indicates that
an approach triggers more diverse and potentially interesting
behaviors of the PHP interpreter.

Figure 3 illustrates the comparison of executed DynASM
opcodes between the official test suite and ZendDiff. We
observe that ZendDiff surpasses the official test suite in each
setting after 24 hours of testing, despite initially lagging in the
first few hours. In terms of consecutive opcodes, ZendDiff
can have a higher improvement up to 25% in 24 hours. The
increased execution of DynASM opcodes in ZendDiff is
due to two factors: (i) ZendDiff preserves the diversity of
generated PHP test programs, and (ii) ZendDiff instruments

Table 2

Official Test
Suite

ZendDiff

3 11502 14254

6 11502 15114

9 11502 15661

12 11502 16197

15 11502 16573

18 11502 16974

21 11502 17280

24 11502 17529

0

4000

8000

12000

16000

20000

3 6 9 12 15 18 21 24

1752917280169741657316197156611511414254

1150211502115021150211502115021150211502

Official Test Suite ZendDiff

Unique DynASM Opcode Pair

Table 2-1

Official Test
Suite

ZendDiff

3 34968 44627

6 34968 49335

9 34968 52486

12 34968 55445

15 34968 57631

18 34968 59610

21 34968 60910

24 34968 62237

0

14000

28000

42000

56000

70000

3 6 9 12 15 18 21 24

62237609105961057631554455248649335
44627

3496834968349683496834968349683496834968

Official Test Suite ZendDiff

Unique Zend Opcode Triple

Table 2-2

Table 2-3

Official Test
Suite

ZendDiff

3 1406 1784

6 1406 1858

9 1406 1915

12 1406 1961

15 1406 1987

18 1406 2080

21 1406 2113

24 1406 2128

0

500

1000

1500

2000

2500

3 6 9 12 15 18 21 24

21282113208019871961191518581784

14061406140614061406140614061406

Official Test Suite ZendDiff

Unique DynASM Opcode

Fig. 3: DynASM Opcodes or Pairs Coverage Comparison

these programs to dump states for differential cross-checks,
introducing additional operations in DynASM opcodes.
Higher line code coverage. Code coverage is a widely used
metric to evaluate the effectiveness of testing approach. We
evaluate ZendDiff’s line code coverage against the of-
ficial test suite over 24 hours (as suggested in previous
work [46]). Figure 4 shows the coverage results. We notice
that ZendDiff outperforms the official test suite over the
24 hours of testing. The official test suite remains almost
unchanged due to its static nature with a limited number of
test cases, while ZendDiff is capable of continuous testing
with an increasing trend of line code coverage after 24 hours.
Our code coverage can achieve even higher (e.g., 82.0%) after
7 days’ testing. For quick testing, the official test suite might
have higher efficiency in detecting potential inconsistencies
within minutes, but ZendDiff provides the capability of
automatic and continuous testing of the PHP interpreter with
higher efficiency in the long run.

C. Ablation Study of ZendDiff

We perform an ablation study to analyze the contribution of
our three key strategies: JIT-aware program mutation, program
state probing, and dual verification.
JIT-aware Program Mutation. We evaluate its effectiveness
in increasing the intensity of JIT execution. Specifically, we
use a set of 3,000 mutated test cases generated by FlowFusion
and execute them under various JIT configurations: default
tracing JIT, function-level JIT (i.e., whole-script JIT), tracing
JIT with a minimal hot function threshold, and tracing JIT
with a minimal hot loop threshold.

To assess its impact, we propose two metrics: JIT-aware
memory usage and the probability of JIT trace initia-
tion, which can be observed by applying specific bitmasks
in opcache.jit_debug configuration. JIT memory usage
serves as an indirect indicator of JIT activity—higher memory
consumption generally reflects more frequent or extensive JIT
compilation. The trace initiation probability is computed by
analyzing execution logs for the presence of the "TRACE 1
start" marker, which indicates the start of a tracing JIT

Table 2

Official Test Suite FlowFusion

2 0.746 0.774

4 0.746 0.782

6 0.746 0.785

8 0.747 0.788

10 0.747 0.789

12 0.747 0.790

14 0.747 0.791

16 0.747 0.792

18 0.747 0.794

20 0.747 0.794

22 0.747 0.795

24 0.747 0.795

70%

72%

74%

76%

78%

80%

82%

2 4 6 8 10 12 14 16 18 20 22 24

0.7950.7950.7940.7940.7920.7910.7900.7890.7880.7850.782
0.774

0.7470.7470.7470.7470.7470.7470.7470.7470.7470.7460.7460.746

Official Test Suite ZendDiff

Fig. 4: Code Coverage Improvement of ZendDiff

compilation.

TABLE II: JIT-Aware Program Mutation Analysis

JIT Memory Usage (MB) JIT Tracing (%)

Non-JIT N/A N/A
Tracing JIT 2403.72 0.06
Function JIT 19667.04 0
Hot Function 5893.90 0.96
Hot Loop 5538.27 0.93

Results in Table II show that mutations targeting hot func-
tions and hot loops significantly increase the probability of
triggering JIT tracing. These cases often involve more complex
logic, which is more likely to contain subtle bugs. Compared
to the default tracing JIT, both hot function and hot loop
configurations exhibit higher JIT memory usage, indicating
more intensive JIT activity. Although function JIT, which
compiles the entire script at once, tends to consume more
memory overall, tracing JIT performs on-the-fly optimizations,
resulting in more sophisticated and dynamic JIT executions.
Program State Probing. To evaluate the effectiveness of
program state probing, we run ZendDiff with and without
this feature enabled, measuring the number of bug alarms
triggered after executing a fixed number of test cases. Using
randomly generated PHP inputs, both configurations are tested
under identical conditions, 5,000 cases per hour for 24 hours,
to simulate real-world usage. Dual verification is enabled
throughout the experiment to filter out unstable results. The
results show that ZendDiff without state probing reports
many fewer bug alarms. In contrast, enabling program state
probing improves detection efficiency, uncovering over 50%
more bug alarms on average with the same number of test
cases. This demonstrates that state probing increases the
likelihood of detecting logic bugs in the PHP interpreter.
Dual Verification. The dual verification strategy aims to
reduce false alarms. To evaluate its effectiveness, we compare
three configurations: (i) ZendDiff1 with a naive differential
oracle (no verification), (ii) ZendDiff2 with dual verifi-
cation, and (iii) ZendDiff3 with triple verification, which
adds a third execution for consistency checks. We run each
setting for 24 hours to compare false positive rates and
overall efficiency. This evaluation leverages test case pre-
processing and program state probing (Section III) to mitigate
nondeterminism and capture fine-grained execution states.

Figure 5 compares three configurations: differential test
oracle (I), dual verification (II), and triple verification
(III), showing the total number of processed test cases and
the distribution of passed (functional) versus failed (buggy)
cases. Naive ZendDiff1 (I) classifies around 90% of cases
as bugs, but manual inspection reveals most are false positives
due to unstable executions. Dual verification in ZendDiff2

(II) effectively filters out these unstable cases, significantly
reducing false alarms. Triple verification ZendDiff3 (III)
yields similar results to ZendDiff2, with only 9 additional
unstable cases filtered. Over a 24-hour run, ZendDiff2 pro-
cesses the most test cases (237,908), compared to ZendDiff1

Table 2-1

ZendDiff₃ - Dual
Verification

Total 129080
Pass 128999
Fail 81

81

128999129080

Table 2-1-1

ZendDiff₃ - Triple
Verification

Total 81
Pass 9
Fail 72

72981

Table 2-1-2

ZendDiff₃ - Diff

Total 140503
Pass 11423
Fail 129080

129080

11423

140503

Table 2-1-2-1

ZendDiff₂ - 1

Total 237908
Pass 18965
Fail 218943

218943

18965

237908

Table 2-1-2-2

ZendDiff₂ - 1

Total 218943
Pass 218740
Fail 203

203

218740218943

Table 2-1-2-1-1

ZendDiff₁(I) ZendDiff₂ (I) ZendDiff₃ (I)

Total 91084 237908 140503
Pass 7241 18965 11423
Fail 83843 218943 129080

83843

7241

91084

Total Pass Fail

ZendDiff1 (I) ZendDiff2 (I) ZendDiff2 (II) ZendDiff3 (I) ZendDiff3 (II) ZendDiff3 (III)

81

128999129080
72

9

81129080

11423

140503

218943

18965

237908

203

218740218943

Total Pass Fail

129080

11423

140503

218943

18965

237908

83843

7241

91084

ZendDiff₁(I)
ZendDiff₂ (I)
ZendDiff₃ (I)

ZendDiff1 (I) ZendDiff2 (I)

ZendDiff2 (II)

ZendDiff3 (I) ZendDiff3 (II) ZendDiff3 (III)

Bug!

Bug! Bug!

Fig. 5: Effectiveness and Efficiency Comparison Among
ZendDiff1, ZendDiff2, and ZendDiff3

(91,084) and ZendDiff3 (140,503), demonstrating its better
efficiency. Since ZendDiff logs all detected bugs along with
reproducing inputs and outputs, the high false positive rate in
ZendDiff1 leads to time-consuming logging (83,843 cases),
while ZendDiff2 and ZendDiff3 store only 203 and
72 cases. Although ZendDiff3 improves stability, its extra
verification step reduces throughput. Overall, dual verification
achieves the best balance of accuracy and efficiency.

We analyze the distribution of bug results (particularly false
positives) with and without dual verification. False positives
primarily fall into four categories: (i) FileFP: File-related
functions like fileinode() return varying results due to
dynamic file system behavior. (ii) DynamicFP: Dynamic iden-
tifiers such as PIDs, ports, session IDs, and memory addresses
differ across runs. (iii) TimeFP: Timestamps vary due to exter-
nal timing factors. (iv) RandomFP: Randomized functions like
rand() or shuffle() produce non-deterministic outputs.
ZendDiff also detects expected differences tied to JIT

mode, which are consistent within the same mode and
pass our verification: (i) JITCfgDiff: Differences in printed
JIT configuration due to varying runtime environments. (ii)
GCMemDiff: Variations in garbage collection memory behav-
ior between non-JIT and JIT. (iii) ObjRefNumDiff: Differ-
ences in object reference numbering across execution modes.

The use of dual verification in ZendDiff significantly
improves the identification of actual bugs while reducing false
positives, as shown in Figure 6. The pie charts demonstrate
that under differential oracle, false positives constitute a large
portion (e.g., FileFP at 56.6%), while the proportion of de-
tected bugs is low at 0.4%. However, with the implementation
of dual verification, the proportion of bugs detected rises to
63.9%, effectively reducing false positives across categories
like FileFP, DynamicFP, and TimeFP. These results show
that dual verification enhances the accuracy and efficiency of
logic bug detection.

Table 2

ZendDiff without
Dual Verification

ZendDiff with Dual
Verification

FileFP 56.6% 0.0% 56.6% 85.0%

DynamicFP 11.8% 1.4% 11.8% 1.6%

TimeFP 8.7% 4.2% 8.7% 9.7%

RandomFP 1.0% 0.0% 1.0% 0.0%

JITCfgDiff 18.5% 13.9% 18.5% 1.3%

GCMemDiff 0.0% 8.3% 0.0% 0.0%

ObjRefNumDiff 0.2% 6.9% 0.2% 0.4%
Bugs 0.4% 63.9% 0.4% 0.2%

Others 2.8% 1.4% 2.8% 1.6%

ZendDiff - DifferentialOracle
Others
2.8%

Bugs
0.4%

ObjRefNumDiff
0.2%

JITCfgDiff
18.5%

RandomFP
1.0% TimeFP

8.7%
DynamicFP

11.8%

FileFP
56.6%

FileFP
DynamicFP
TimeFP
RandomFP
JITCfgDiff
GCMemDiff
ObjRefNumDiff
Bugs
Others

ZendDiff - DualVerification

Others
1.4%Bugs

63.9%

ObjRefNumDiff
6.9%

GCMemDiff
8.3%

JITCfgDiff
13.9%

TimeFP
4.2%

DynamicFP
1.4%

False Positive

Expected Diff

Bugs

Others

Fig. 6: Bug Result Distribution of ZendDiff with (Right)
and without (Left) Dual Verification

VI. RELATED WORK

Differential Testing. Differential testing is a well-established
approach for detecting semantic discrepancies and vulner-
abilities in various software. For instance, Csmith [19] is
a random C program generator designed to stress-test C
compilers via differential testing while avoiding undefined
behavior. For Java Virtual Machine (JVM) implementations,
Classfuzz [22] and Classming [23] focus on the JVM startup
process and comprehensive JVM testing, respectively. Rust-
Smith [24] performs differential testing between Rust compil-
ers and across optimization levels to identify potential bugs.
JEST [18] compares JavaScript engine behaviors against the
ECMAScript specification through automatically synthesized
conformance tests with injected assertions. Frankencerts [20]
and Mucerts [21] utilize behavioral differences between test
programs to optimize input generation and detect bugs in
SSL/TLS-related systems. R2Z2 [25] extends differential test-
ing to web browsers by detecting rendering inconsistencies
across versions, while Diffuzz [26] applies differential fuzzing
to side-channel analysis by examining resource consumption
variations under different secret inputs.
Differential Testing via Compilation Space Exploration.
This line of work treats the discrepancies between differ-
ent compilation optimizations as potential logic bugs. For
example, EMI [32] generates input-equivalent program vari-
ants by pruning unexecuted code to differentially test com-
piler optimizations. Artemis [31] strategically mutates test
programs with JIT-relevant, yet semantics-preserving code
structures to trigger diverse JIT compilation choices of JAVA
Virtual Machines (JVMs). JIT-Picking [17], FuzzJIT [47],
and Dumpling [34] focus on identifying such optimization
bugs in JavaScript engines by comparing the behavior of JS
interpreters and JIT compilers. Similarly, our approach targets
logic bugs in the PHP engine via detecting discrepancies of
non-JIT and JIT executions. Consistent with this line of work
that typically distinguishes itself by tackling new domains with
tailored oracles which show practical effectiveness, our work
likewise focuses on making differential testing practical for
PHP through three key techniques (i.e., program state probing,
JIT-aware program mutation, and dual verification).
Bug Detection in the PHP Engine. Existing approaches
mainly leverage fuzzing techniques to detect bugs in the
PHP Engine. For instance, LangFuzz [3], NAUTILUS [4],
Gramatron [5], and PolyGlot [6] focus on memory errors in the
PHP interpreter. Reflecta [8] gains a diverse set of language
features dynamically to reduce manual effort. FlowFusion [7]
merges code semantics from two or more seed programs to
generate new fuzzing inputs and effectively finds hundreds
of memory errors in the PHP interpreter. However, these
approaches primarily rely on crashes or sanitizer alerts to
detect bugs, which differs from our focus, logic bugs, that do
not cause crashes or sanitizer alerts. To fill this gap, we develop
ZendDiff to detect logic bugs in the PHP interpreter through
differential testing of JIT and non-JIT execution modes.
Bug Discovery in Other Compilers or Interpreters. Existing

solutions for detecting bugs in other compilers and interpreters
mainly concentrate on fuzzing techniques, such as C/C++[48,
19], Rust[24, 49], and JavaScript (JS) [50, 47, 17], to mitigate
potential cascading security issues. For instance, GrayC [48] is
a greybox, coverage-directed, mutation-based approach to fuzz
C compilers and code analyzers by employing a new set of
mutations on common C constructs. Comfort [51] leverages a
deep learning-based language model to automatically generate
JS test code to detect bugs in JS engines. Fuzzilli [50]
presents the design and implementation of an intermediate
representation (IR) aimed at uncovering vulnerabilities in JIT
compilers. FuzzJIT [47] focuses on identifying JIT compiler
bugs by triggering the JIT compilation process and capturing
execution inconsistencies.

VII. CONCLUSION

In this paper, we introduced ZendDiff, a novel differen-
tial testing framework that leverages JIT and non-JIT exe-
cution modes to detect logic bugs in the PHP interpreter.
Our approach integrates program state probing for capturing
fine-grained execution state, JIT-aware program mutation for
sufficiently exercising JIT functionality, and dual verification
for handling non-deterministic behaviors. These techniques
enable effective detection of logic bugs that silently lead
to incorrect results. Our evaluation results demonstrated the
superior efficacy of ZendDiff compared to existing testing
approaches. Impressively, it discovered 51 previously unknown
logic bugs in the PHP interpreter, with 37 fixed and 3 con-
firmed by developers, while achieving higher code coverage
and executing more Zend opcodes than the official test suite.
ZendDiff has been acknowledged by the PHP development
team and provides a practical tool to automatically discover
logic bugs in the PHP interpreter.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
suggestions and the PHP developers for promptly addressing
our bug reports and sharing valuable feedback.

REFERENCES

[1] H. Kiran, https://techjury.net/blog/php-usage-statistics/.
[2] w3techs, https://w3techs.com/technologies/details/pl-php.
[3] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”

in 21st USENIX Security Symposium (USENIX Security 12), 2012, pp.
445–458.

[4] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Nautilus: Fishing for deep bugs with grammars.” in NDSS,
2019.

[5] P. Srivastava and M. Payer, “Gramatron: Effective grammar-aware
fuzzing,” in Proceedings of the 30th acm sigsoft international symposium
on software testing and analysis, 2021, pp. 244–256.

[6] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee,
“One engine to fuzz’em all: Generic language processor testing with
semantic validation,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 642–658.

[7] Y. Jiang, C. Zhang, B. Ruan, J. Liu, M. Rigger, R. H. Yap, and Z. Liang,
“Fuzzing the PHP interpreter via dataflow fusion,” in 34th USENIX
Security Symposium (USENIX Security 25), 2025, pp. 6143–6158.

[8] C. Zhang, G. Lee, Q. Liu, and M. Payer, “Reflecta: Reflection-based
scalable and semantic scripting language fuzzing,” in Proceedings of the

20th ACM Asia Conference on Computer and Communications Security,
2025, p. 1772–1787.

[9] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a
new approach for generating next test cases,” Department of Computer
Science, Hong Kong, Tech. Rep. HKUST-CS98-01, 1998.

[10] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Comput. Surv., vol. 51, no. 1, 2018.

[11] T. Y. Chen, J. W. Ho, H. Liu, and X. Xie, “An innovative approach
for testing bioinformatics programs using metamorphic testing,” BMC
bioinformatics, vol. 10, no. 1, pp. 1–12, 2009.

[12] A. Ramanathan, C. A. Steed, and L. L. Pullum, “Verification of com-
partmental epidemiological models using metamorphic testing, model
checking and visual analytics,” in 2012 ASE/IEEE International Con-
ference on BioMedical Computing (BioMedCom), 2012, pp. 68–73.

[13] W. K. Chan, S. C. Cheung, and K. R. Leung, “A metamorphic testing
approach for online testing of service-oriented software applications,”
International Journal of Web Services Research (IJWSR), vol. 4, no. 2,
pp. 61–81, 2007.

[14] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded software by
metamorphic testing: A wireless metering system case study,” in 2011
IEEE 36th Conference on Local Computer Networks, 2011, pp. 291–
294.

[15] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau, “Inte-
gration testing of context-sensitive middleware-based applications: a
metamorphic approach,” International Journal of Software Engineering
and Knowledge Engineering, vol. 16, no. 05, pp. 677–703, 2006.

[16] M. N. Mansur, M. Christakis, and V. Wüstholz, “Metamorphic testing
of datalog engines,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, p. 639–650.

[17] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“JIT-Picking: Differential fuzzing of javascript engines,” in Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2022, pp. 351–364.

[18] J. Park, S. An, D. Youn, G. Kim, and S. Ryu, “JEST: N+1 -version
Differential Testing of Both JavaScript Engines and Specification.” in
International Conference on Software Engineering (ICSE), 2021, pp.
13–24.

[19] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2011, p. 283–294.

[20] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
Frankencerts for Automated Adversarial Testing of Certificate Validation
in SSL/TLS Implementations,” in 2014 IEEE Symposium on Security
and Privacy, 2014.

[21] Y. Chen and Z. Su, “Guided differential testing of certificate validation
in SSL/TLS implementations,” in Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering, 2015.

[22] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2016.

[23] Y. Chen, T. Su, and Z. Su, “Deep differential testing of JVM implemen-
tations.” in International Conference on Software Engineering (ICSE),
2019, pp. 1257–1268.

[24] M. Sharma, P. Yu, and A. F. Donaldson, “RustSmith: Random dif-
ferential compiler testing for Rust,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 1483–1486.

[25] S. Song, J. Hur, S. Kim, P. Rogers, and B. Lee, “R2z2 - detecting
rendering regressions in web browsers through differential fuzz testing,”
in Proceedings of the 44th International Conference on Software Engi-
neering. ACM, 2022, pp. 1818–1829.

[26] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: Differential
Fuzzing for Side-Channel Analysis.” in Software Engineering (SE),
2020, pp. 125–126.

[27] Facebook, “HHVM: A virtual machine for executing programs written
in hack.” https://github.com/facebook/hhvm, 2025.

[28] F. Emmott, “Ending php support, and the future of hack,” https://hhvm.
com/blog/2018/09/12/end-of-php-support-future-of-hack.html, 2018.

[29] “PHP 8.0 JIT,” https://php.watch/versions/8.0/JIT, 2020.
[30] “PHP JIT in depth,” https://php.watch/articles/jit-in-depth, 2020.

https://techjury.net/blog/php-usage-statistics/
https://w3techs.com/technologies/details/pl-php
https://github.com/facebook/hhvm
https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://php.watch/versions/8.0/JIT
https://php.watch/articles/jit-in-depth

[31] C. Li, Y. Jiang, C. Xu, and Z. Su, “Validating jit compilers via
compilation space exploration,” ACM Trans. Comput. Syst., vol. 43,
no. 3, Jul. 2025. [Online]. Available: https://doi.org/10.1145/3715102

[32] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
216–226. [Online]. Available: https://doi.org/10.1145/2594291.2594334

[33] S. Zhou, M. Jiang, W. Chen, H. Zhou, H. Wang, and X. Luo,
“Wadiff: A differential testing framework for webassembly runtimes,”
in Proceedings of the 38th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’23. IEEE Press, 2024, p.
939–950. [Online]. Available: https://doi.org/10.1109/ASE56229.2023.
00188

[34] L. Wachter, J. Gremminger, C. Wressnegger, M. Payer, and F. Tof-
falini, “Dumpling: Fine-grained differential javascript engine fuzzing,”
in NDSS, 2025.

[35] P. Li and M. Zhang, “Fuzzcache: Optimizing web application fuzzing
through software-based data cache,” 2024.

[36] “PHPT structure details,” https://qa.php.net/phpt details.php, 2020.
[37] “PHP opcache runtime configuration,” https://www.php.net/manual/en/

opcache.configuration.php, 2025.
[38] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing

input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[39] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for C compiler bugs,” in Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and
Implementation, 2012, pp. 335–346.

[40] M. Rigger and Z. Su, “Finding bugs in database systems via query
partitioning,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, nov
2020. [Online]. Available: https://doi-org.libproxy1.nus.edu.sg/10.1145/
3428279

[41] ——, “Testing database engines via pivoted query synthesis,” in Pro-
ceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation, 2020.

[42] gcovr, https://gcovr.com/, 2024.
[43] “The official code repository of the PHP interpreter,” https://github.com/

php/php-src/, 2025.
[44] M. Kamm, M. Rigger, C. Zhang, and Z. Su, “Testing graph database

engines via query partitioning,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, p. 140–149.

[45] “Dynasm,” https://luajit.org/dynasm.html, 2025. [Online]. Available:
https://luajit.org/dynasm.html

[46] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, p. 2123–2138.

[47] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “FuzzJIT: Oracle-
enhanced fuzzing for JavaScript engine JIT compiler,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 1865–1882.

[48] K. Even-Mendoza, A. Sharma, A. F. Donaldson, and C. Cadar, “grayc:
Greybox fuzzing of compilers and analysers for C,” in Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2023, pp. 1219–1231.

[49] F. Tuong, M. Omidvar Tehrani, M. Gaboardi, and S. Y. Ko, “Symrustc:
A hybrid fuzzer for rust,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2023, pp.
1515–1518.

[50] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “Fuzzilli: Fuzzing
for javascript jit compiler vulnerabilities.” in NDSS, 2023.

[51] G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, X. Sun, L. Bian,
H. Wang, and Z. Wang, “Automated conformance testing for javascript
engines via deep compiler fuzzing,” in Proceedings of the 42nd ACM
SIGPLAN international conference on programming language design
and implementation, 2021, pp. 435–450.

https://doi.org/10.1145/3715102
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1109/ASE56229.2023.00188
https://doi.org/10.1109/ASE56229.2023.00188
https://qa.php.net/phpt_details.php
https://www.php.net/manual/en/opcache.configuration.php
https://www.php.net/manual/en/opcache.configuration.php
https://doi-org.libproxy1.nus.edu.sg/10.1145/3428279
https://doi-org.libproxy1.nus.edu.sg/10.1145/3428279
https://gcovr.com/
https://github.com/php/php-src/
https://github.com/php/php-src/
https://luajit.org/dynasm.html
https://luajit.org/dynasm.html

	Introduction
	Background
	Approach
	Differential Input Preparation
	Program State Probing.
	JIT-Aware Program Mutation
	Differential Testing with Dual Verification

	Implementation
	Evaluation
	Discovering Previously Unknown Logic Bugs
	Improved Effectiveness of ZendDiff
	Ablation Study of ZendDiff

	Related Work
	Conclusion
	References

