Evaluating Disassembly Errors With Only Binaries

Lambang Akbar Wijayadi
lambang@comp.nus.edu.sg
National University of Singapore
Singapore

Zhenkai Liang
liangzk@comp.nus.edu.sg
National University of Singapore
Singapore

Abstract

Disassemblers are crucial in the analysis and modification of bina-
ries. In practice, disassemblers are known to have errors. Existing
works showing disassembler errors rely on heuristic implementa-
tion without specific guarantees. They also assume source code and
compiler toolchains for ground truth. However, the assumption of
source code is contrary to typical binary scenarios where only the
binary is available. In this work, we investigate an approach with
minimal assumptions and a sound approach to disassembly error
evaluation that does not require source code. Use of source code
does not address the fundamental problem of binary disassembly
and fails when only the binary exists. As far as we know, this is
the first work to evaluate disassembly errors using only the binary,
together with comprehensive experiments and error findings.

We propose TraceBin, which uses dynamic execution to find
disassembly errors. TraceBin targets the use case where the disas-
sembly is used in an automated fashion for security tasks on a target
binary, such as static binary instrumentation, binary hardening,
automated code repair, and so on, which may be affected by disas-
sembly errors. Discovering disassembly errors in the target binary
aids in reducing problems caused by such errors. Furthermore, we
are unaware of existing approaches that can evaluate errors given
only a target binary, as they require source code. Our evaluation
shows TraceBin finds: (i) errors consistent with existing studies,
even without source; (ii) disassembly errors identified as due to
control flow; (iii) new interesting errors; (iv) errors in non-C/C++
binaries; (v) errors in closed-source binaries; and (vi) show that
disassembly errors can have significant security implications using
PoC attacks. Overall, our experimental results show that TraceBin
finds many errors in existing popular disassemblers. It is also help-
ful in automated security tasks on (closed-source) binaries relying
on disassemblers.

CCS Concepts

- Software and its engineering — Assembly languages; Soft-
ware testing and debugging; - Security and privacy — Soft-
ware reverse engineering.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ASIA CCS ’25, Hanoi, Vietnam

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1410-8/2025/08

https://doi.org/10.1145/3708821.3733884

Yuancheng Jiang
yuancheng@comp.nus.edu.sg
National University of Singapore
Singapore

Roland H.C. Yap
ryap@comp.nus.edu.sg
National University of Singapore
Singapore

Zhuohao Liu

liu_zhuohao@u.nus.edu
National University of Singapore
Singapore

Keywords
Binary Analysis, Disassembly Correctness

ACM Reference Format:

Lambang Akbar Wijayadi, Yuancheng Jiang, Roland H.C. Yap, Zhenkai
Liang, and Zhuohao Liu. 2025. Evaluating Disassembly Errors With Only
Binaries. In ACM Asia Conference on Computer and Communications Security
(ASIA CCS °25), August 25-29, 2025, Hanoi, Vietnam. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3708821.3733884

1 Introduction

Disassemblers play a crucial role in reverse engineering, binary
analysis, binary-level security mechanisms, code repair, etc. The
disassembly problem is to recover the assembly instructions cor-
responding to the code from a given binary. It is well known that
perfect disassembly is generally impractical due to the intractability
of the disassembly problem [9, 34]. The difficulty is due to code and
data being indistinguishable in Von Neumann architectures. An-
other difficulty is that deciding the target address of indirect control
flow is also intractable; hence, whether some potential data should
be disassembled as code cannot always be known [34]. In practice,
there are further problems—x86 (and x64) is particularly difficult
as instructions are variable length from 1-15 bytes long, the disas-
sembler may need to handle overlapping instructions (including
branching inside instruction bytes), etc.

The primary use of disassemblers is when software is only avail-
able in binary form, e.g., closed-source COTS (Commercial off-the-
shelf) software. Any analysis or hardening of the software would
usually start with disassembly to obtain the machine-level program.
In contrast, if the source is available, there would be little need for
disassembly. Disassembly errors are significant since an error is tan-
tamount to the disassembler giving a different (incorrect) assembly
program.

We motivate why we want to determine disassembler errors
given only a target binary. Suppose we have a closed-source binary
B. We use a disassembler to obtain a disassembly D from B. In one
security application, we use an automated tool on D to determine if
a potentially sensitive function f can be called from a certain mod-
ule. If f is not reached, we know that B is safe wrt this requirement.
The analyzer constructs the CFG from D, and there are no paths
from the module to f, so it reports B as safe. However, this happens
to be a mistake, but not due to the analyzer—it occurs at the first
step where the disassembler has made an error missing a call to
f. Various tools rely on the disassembler to recover the program.
For example, in the McSema [26, 27] binary lifter, a disassembler

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708821.3733884
https://doi.org/10.1145/3708821.3733884

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

such as IDA Pro is used in constructing the CFG of the binary; thus,
errors in the ida disassembly affect lifting.!

Another example using the same B and D is when we want to
harden B with a binary CFI (Control Flow Integrity) tool, which
performs binary rewriting to add the requisite CFI checks. Using D,
the analyzer determines that f is unreachable, so it adds checks into
the binary to only allow control flow transfer to reachable functions.
An invalid control flow transfer is considered to be an attack and
the default behavior would be to generate an exception. Now, when
B is run, there is no attack, but the program crashes due to a false
positive in the CFI defense induced by the disassembly. In both
examples, we see that the first step to understand what the binary B
is supposed to do, i.e. determine the underlying native code program
of the binary. Given that there would not be source code for closed-
source binaries, e.g., COTS (Commercial-off-the-shelf) software,
determining the code is the task of the disassembler. Naturally,
errors in the disassembly can compromise other security tools
that rely on the disassembly, which motivates our work. Examples
showing failure on security tasks are shown in Q6 Section 5.

In this paper, we want to evaluate errors in disassemblers given:
(i) (closed-source) target binaries, i.e. no source code; and (ii) the
evaluation gives a context to help explain possible reasons for an
error. Given only a target binary without source code, it is not
practical to find all disassembly errors in the binary. However, we
show that even finding some errors is interesting and significant.

Existing studies [1-3] have already shown disassembly errors to
occur in disassemblers. However, these studies mainly assume the
availability of a source, which means these approaches do not hold
in a binary-only setting without a source. We remark that in manual
reverse engineering with human-in-the-loop, some errors can be
tolerated. In more automated settings, finding if a disassembly error
can lead to a task failure will be helpful to improve the security
process. Our setting involves non-trivial binaries without “human
in the loop” and mostly/fully automated workflow for scalability
reasons, such as the two motivating examples. Applications such
as static binary instrumentation [4, 5], binary CFI [6, 7], automated
code repair [8], etc., rely on disassembly and fall in our setting. Er-
rors in the disassembly critically affect the correctness and security
guarantees of such tasks.

To find errors in disassembly tools, the key question when eval-
uating the disassembly is what is the correct “ground truth”. As
it is not feasible to have an always correct disassembler, i.e., an
oracle that gives the correct disassembly, it is necessary to find a
proxy for the oracle. Most works that evaluate the correctness of
disassembly assume a heuristic strategy as the oracle, e.g., compiler
toolchain used as an oracle. Ideally, the oracle should be sound (no
disassembly error) and complete (no code missed). Existing works
using heuristic oracles have shown evaluation using source code
benchmarks, but do not give any guarantees of disassembly sound-
ness/completeness. Most studies rely on a compilation toolchain [2]
using a controlled study requiring source. This does not apply in re-
alistic disassembly use cases (see also the two motivating examples)
where there is only a target binary without source code.

'In McSema [26], they argue that recovering the CFG is a difficult problem and one
that a disassembler such as Ida Pro has spent effort in discovering.

Wijayadi et al.

Our approach instead has minimal assumptions and only requires
the binary, which may be stripped. It is important not to have false
positives, i.e. when evaluation says a disassembled instruction is an
error, it is guaranteed to be an error in the ground truth. The diffi-
culty of the disassembly problem means we should not, in general,
expect to identify all errors. In this paper, we explore an approach
that is intrinsically sound, but has no completeness guarantees.
Essentially, we pick soundness over completeness, which allows us
to evaluate only with binaries. We remark that there are intrinsic
limitations of the binary-only setting. We assume benign binaries
(but also study trojan binaries) and not malware because we are
primarily interested in disassemblers used further in security task
toolchains to harden binaries. Malware is also problematic given the
intrinsic theoretical difficulty of disassembly; the malware writer
can exploit this to make disassembly arbitrarily difficult. The mostly
benign setting is closer to binaries being produced by regular com-
pilers, which are not adversarial 2 Similarly, self-modifying code,
which need not be malware, is not in scope and also not evaluated
by existing work.?

In this paper, the proxy oracle that is used to evaluate a disas-
sembler should meet the following requirements:

R1: Soundness guarantees. The oracle is sound, i.e. an error
found by the disassembly evaluation is guaranteed to be an
error.

R2: Compiler and programming language agnostic. The
(proxy) oracle should not be tied to a compiler/program-
ming language. This avoids restrictions on how the binary
is created, e.g. should not need a particular compiler or need
certain compiler options.*

R3: No reliance on source code for evaluation. While the dis-
assembler only works with a binary, the oracle should simi-
larly not need any source code for the evaluation. The target
binary can be closed source.

R4: No debug/symbol information. The (proxy) oracle should
not need any debug/symbol information in the binaries, i.e.
no restrictions on how the binary is created.

We highlight that these requirements are incompatible with existing
approaches [1, 3] which rely on strong source (no R3) and toolchain
(no R2/R4) assumptions (requiring source).

Our experimental evaluation shows the feasibility and useful-
ness of our approach, which finds many and significant disassem-
bly errors without such assumptions. We note that Andriesse et
al. [3] point out a wide range of views on difficulty of disassembly
ranging from being a “solved problem” [7] to “complex cases are
rampant” [18]. Evaluation using a sound proxy oracle can also help
shed light on these viewpoints since the disassembly problem is im-
practical to fully solve, and good results may be highly dependent
on assumptions and other factors.

We propose to generate a ground truth (partial) disassembly
which is correct by construction. Conceptually, this is achieved by
simply tracing the instructions that are executed, which gives a par-
tial disassembly of the binary. As those instructions are executed,

ZExisting works [1-3] also do not evaluate malware as they require source code.

31t is feasible to extend our approach to deal with self-modifying code.

4Qur evaluation suggests that many disassemblers are tuned to certain compilers.
While this is understandable, it creates a dependency and may cause issues with
changes to compilers/language standards, etc.

Evaluating Disassembly Errors With Only Binaries

we are certain that they should be in the disassembly. Simply using
an execution trace is not be scalable. Our implementation is de-
signed to scale to the size of the binary rather than the length of the
execution trace using what we call “unique instruction traces”. Our
prototype tool, TraceBin, also provides an explanation feature for
control flow errors and merging of unique instruction traces, which
increases the scope of the proxy oracle. We evaluate several popular
disassemblers (objdump, angr, radare2, ghidra, and ida), focusing on
open source disassemblers but including the popular closed source
ida, to answer the following questions:

Q1: Can sound disassembly evaluation confirm existing results
[1, 3] without needing source/compiler toolchains?

Q2: Can control flow errors be explained using the context of the
source/target?

Q3: Are there interesting new errors beyond the results of [1, 3]?

Q4: As most work focused on binaries from C/C++, we investigate
what happens when non-C/C++ binaries are used to evaluate
disassemblers?

Q5: Can closed-source binaries that may lack compiler-derived
ground truth be used to study errors in disassemblers?

Q6: Can trojan binaries that exploit specific disassembly errors
be used to hide trojan code, i.e. instructions for an inserted
vulnerability is missed in the disassembly.

Our experiments show TraceBin can be used to answer Q1 to
Q6. It has minimal requirements that allow for practical evaluation
of Q4 and Q5. We highlight that despite superficial similarities
with existing evaluations using the SPEC CPU suite [1-3], our eval-
uation is essentially different. This is due to a difference in the
oracle employed, [1-3] use an oracle which is closer to the ground
truth but to do this requires source code and compiler toolchain
support, which violates requirements R2 to R4. Furthermore, using
the compiler toolchain while giving good benchmarking results
does not necessarily give soundness R1 nor completeness guaran-
tees. Instead, we only use binaries, which is what the fundamental
disassembler problem requires, and follow requirements R1 to R4,
e.g., no source code, compiler/language dependencies. Furthermore,
in security tasks involving analysis/instrumentation of binaries, de-
termining if there are any errors in the disassembly is useful since
any disassembly error can make the analysis (instrumentation) to
be otherwise incorrect (invalid) and Q6 shows proof of concept
problems which can arise.

In summary, we have the following contributions:

o We demonstrate the feasibility of determining errors made
by a disassembler given only a binary and the ability to
run it. Existing works evaluating disassembler accuracy are
incompatible with binary-only requirements (R3).

o The use of a sound proxy oracle guarantees that errors found
are indeed errors (R1).

e Experimental evaluation on many binaries firstly shows that
our sound proxy oracle approach finds problems with disas-
semblers consistent with previous findings (Q1) without the
need for source code and new cases of disassembly errors
(Q2, Q3).

e We show that disassembly errors can be significant from a
security perspective. We use examples of trojanized binaries
and source code with inserted (PoC) vulnerabilities to show

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

that a disassembly error can be used to hide the inserted
vulnerabilities. This shows that errors in binary disassembly
can lead to attacks or bypass some defense (Q6).

2 Background
2.1 Binary Disassembly

There are two general approaches for binary disassembly: linear
sweep and recursive descent. Linear sweep essentially iterates lin-
early through selected regions to find machine instructions. To
achieve this, heuristics can be used, e.g., objdump treats invalid op-
codes as an error and skips a byte [1]. We will mainly focus on
objdump as it is known to have good accuracy [3]. The drawback of
a linear sweep is that embedded data can cause the assumption of
sequential disassembly to be incorrect, as a linear sweep would mis-
takenly treat data as code. This causes desynchronization between
what is disassembled versus the actual instructions. Fortunately,
on the x86, linear disassembly is found to be self-repairing and
resynchronizes [19], but still, disassembly error is the consequence.

To mitigate the simple assumption behind linear sweep, i.e., code
is sequentially laid out, recursive descent follows the control flow
of the machine code program. Given a start address, ie., the entry
point of the binary, instructions are identified by following the con-
trol flow; thus, it can avoid disassembling data that lies in the text
segment. However, due to its static nature, the recursive descent
method follows the static control flow, which means that any indi-
rect control flow may not be accurately identified. Various heuristics
are used to discover the additional code. Pang et al. [1] studied the
source code for various open-source disassemblers to identify the
heuristics used, such as analysis using constant propagation, lim-
ited backward slicing, searching for patterns, linear sweep of code
gaps, function matching using common function prologue/epilogue
patterns, calling conventions for main, symbols in the binary and
unwinding information, etc. While it is clear that many sophisti-
cated heuristics can be used, there are no guarantees given by such
approaches, and they may be unsound (and incomplete). Section 5
illustrates various errors that occur in disassemblers.

2.2 Accuracy of Disassembly

The disassembly problem is fundamentally difficult and intractable [9,
34]. The same difficulties arise when evaluating disassembly errors
given a target binary and disassembler. As such, we should not
expect to have guaranteed correct disassemblers but be willing to
accept some tradeoffs in both the accuracy of the disassembler and
its evaluation. Realistic assumptions are also important. We assume
that only the binary is available (R3), i.e., closed source, and no
debugging information (R4), i.e., a stripped binary.’

We first define notions of correctness of disassembly in our
setting. Let B be a binary file. We assume, for the sake of definitions,
the existence of an oracle O which gives the correct disassembly.
The disassembly produced by disassembler A on B is denoted by
D4(B), and the correct disassembly with the perfect ground truth
oracle O is Dp(B). We also represent each instruction as a tuple of
the machine instruction and its address.

5In practice, one could have the problem of old source code being not compilable with
current compilers, thus preventing the use of the compiler toolchain.

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

DEFINITION 1. A disassembly D4 (B) is soundif Do (B) € Do (B).

DEFINITION 2. A disassembly D4 (B) is complete if Da(B) 2
Do (B).

A disassembly is represented as a set. Informally, soundness
means no disassembled instruction is incorrect. Consider an in-
struction d in disassembly from disassembler A (d € D4 (B)); the
proxy oracle should be sound to avoid making a mistake in the
evaluation of A wrt instruction d, i.e., if d is an error then indeed
it is an error (d ¢ Do (B)). Conversely, if d is said to be correct, it
must be due to the ground truth (d € Do (B)).

Informally, completeness means that every instruction in the
disassembly occurs in the ground truth but the disassembly may
contain erroneous instructions not in Do), ie., “junk instruc-
tions”. Errors in a disassembly that is only complete can still be a
problem; e.g., a static analysis may think that it is possible to do
an indirect jump to the junk instructions. Ideally, the ground truth
disassembly is one which is both sound and complete disassembly,
i.e., Do(B) = Do(B), but this may be impractical.

The challenge of disassembly lies in the perfect ground truth
disassembly oracle being practically infeasible in the worst case.
As such a more limited proxy is needed. Previous studies have
predominantly relied on static approaches to establish ground truth
under strong assumptions. The approaches are well described by
Pang et al. [2], we summarize:

e Manual analysis of the results—This is inherently unscalable;
e Reusing existing disassemblers—Unfortunately, the problem
is that every disassembler has its own drawbacks;
o Using intermediate compiler outputs—This assumes the com-
piler is the correct oracle and requires source;
e Leveraging compiler metadata [3]—There may be limitations
in the use of symbols and line metadata;
e Tracing compiling process [1]—Modifying the compiler tool-
chain is not scalable.
The above approaches are either not automatable or require source
code and compiler-based toolchains. We highlight that there has
been comprehensive work in [1, 3] with extensive benchmarking,
but they only help to show where disassemblers work or have errors
on a fixed benchmark, but one cannot generalize those results to
a given target binary. Furthermore, the source code and toolchain
assumptions do not hold in a binary-only situation (requirement
R3/R4), which is our goal.

Existing works do not guarantee soundness or completeness;
rather, their evaluation is essentially empirical. Using the compiler
toolchain assumes that relying on compiler modifications and using
compiler outputs is reliable because the compiler is reliable. The
experimental evaluation is essentially empirical, and any conclusion
only holds for the tested results, including versions, options, etc.
Thus, there are inherent difficulties in providing guarantees on such
heuristic oracles.

We highligh that there can still be subtle issues with using com-
piler toolchains. History shows that compilers do have bugs, e.g.,
fuzzers such as Csmith [25] have successfully found compiler bugs.
Debug information in the compiler toolchain has also been shown
to have bugs [28, 29]. Modified compiler toolchains may not scale
over time as language and compilers inevitably change, so the eval-
uation may be restricted to a certain version of the compiler and

Wijayadi et al.

Disassembly Tools m\

0x4000, <opcode>
0x4007, <opcode>
0x4009, <opcode>

Normalize

Comparison

o

Merged Trace
0x4000, <opcode>
0x4006, <opcode>
0x400a, <opcode>

Normalize

Trace
0x4000, <opcode>

Figure 1: Overview architecture of TraceBin.

language. For example, a modified toolchain for C++17, e.g. based
on Clang 6, may not be able to evaluate a program using C++20
even when there is both source and binary.

Notwithstanding that using compiler toolchains also have lim-
itations, using compilers imply availability of source code. This
changes the binary problem to the source code setting, which breaks
our requirements R2 to R4. The primary reason for using disas-
semblers is usually because of a lack of source code. Consequently,
the natural use case of disassemblers is the disassembly of (closed
source) binaries, which is inherently incompatible with any assump-
tions requiring heuristic toolchain-based oracles such as in [1-3].
We show that a different approach, with a sound approach and min-
imal assumptions, can still provide a valuable evaluation of disas-
sembler errors. However, our goal is not to perform comprehensive
experiments on how disassemblers behave under different compiler
settings; rather, we want to explore the soundness approach to see
how well it works to find errors on existing disassemblers given
only target binaries.

As it is not practical to obtain the ground truth, a disassembler
typically makes a tradeoff between completeness and soundness,
which we summarize:

e Sound & Complete: This is impractical as it means that the
disassembler is equivalent to the ground truth oracle Do (B).

e Sound & Not Complete: This is the approach in this paper,
TraceBin, for evaluating disassemblers.

e Not Sound & Not Complete: There are neither soundness
nor completeness guarantees. Our evaluation shows that the
recursive descent dissemblers studied (angr, ghidra, radare2,
ida) belong in this category, incomplete because instructions
are missed (e.g., see Q2 in Section 5) and unsound with wrong
disassembly (e.g., see Appendix F).

The evaluation of disassembly errors will also need to deal similarly
with these tradeoffs, given the lack of a perfect oracle, which would
rely on some form of proxy oracle.

3 Design

The goal is to have a sound but incomplete oracle, so our evaluation
of disassemblers given a target binary will not generally be com-
plete. Ideally, there should be minimal assumptions on the binary.
In order to be sound, we rely on the observation that instructions

Evaluating Disassembly Errors With Only Binaries

that are executed must be contained in the ground truth oracle. A
proxy oracle based on execution traces is intrinsically sound. We
do not claim any special novelty in this observation, but we are not
aware of any (existing) approach that has soundness guarantees.
Our contribution is to show that such a simple approach can answer
Questions Q1 to Q6 while only working with the binaries them-
selves (Requirements R1 to R4). As previously discussed, given the
tradeoff between soundness and completeness, and we focus on
soundness.

The basic abstraction used is as follows. A binary has instruc-
tions and data. An instruction x in the binary can be considered as
being loaded at an address in the process denoted by addr(x). A dis-
assembler disassembles the binary into instructions, an instruction
y in the disassembly would be identified to be at location loc(y).
Once there is a mapping between loc(y) and addr(x), then we can
say that the disassembly is correct on instruction y when x and y are
the same instruction and are at the same address. Otherwise given
X, y is an erroneous instruction in the disassembly, and in this paper,
we simply call this an error. Note that an error could occur due to
either: (i) a mismatch in the machine instruction, i.e. the executed
instruction at an address is different from the the instruction in the
disassembly mapping to that address; or (ii) there is no mapping
from x to the disassembly, i.e. the disassembler has missed x. As
errors are only found using instruction traces, we do not say any-
thing about instructions in the disassembly that are not executed.
Determining the mapping can depend on the operating systems.
More details of our TraceBin prototype are in Section 4.

Generating an execution trace seems conceptually simple; how-
ever, the design needs to be scalable in order to be usable. Consider
the gcc benchmark from SPEC 2006 (403. gcc). Executing the ref
workload on a binary compiled with gcc -03 averages to ~9.1e10
instructions (from the binary) per input,® and runtime is ~130s.
Clearly, naive collection of the trace will not scale as a pure trace
can be very large. We remark that disassemblers can also take
substantial runtime, e.g., angr takes ~842s disassembling 403.gcc.”

For a more scalable design, we make the useful observation that
for our purposes, we can relax T so that it is no longer a sequence of
instructions but rather a set of instructions where an instruction is
composed of an instruction tuple consisting of the machine instruc-
tion and its address. We call this the unique instruction trace. If T is a
sequence of instructions, then the size of T is linear in the execution
time, which can be very large. To avoid the cost of dealing with an
O(T) sized sequence, we design the size of the unique instruction
traces instead to be O(binary size). For example, the 403.gcc bi-
nary has ~ 690K instructions, which is significantly smaller than
the instruction trace as a sequence of 9.1e10 instructions.

In practice, the average binary may be relatively small and both
known and fixed. We regard the size of the unique instruction trace
as O(1) making comparing the trace with the disassembly practical.
Furthermore, trace T need not be from a single run but can be a set
of unique instructions collected from multiple runs of the program,
which we call instruction merging and can be used to increase
instruction coverage. In this paper, we will also use the term trace
to refer to the set of unique instructions and their addresses.

%A lower bound assuming an instruction takes at least one byte on average in the trace
means at least 1GB of trace for 403.gcc .
"The runtime in this case for disassembly is greater than the SPEC runtime.

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

] 10x4099: inc rbx
——»0x405c¢: mov rax, rbx
:0x4062: jmp 0x40fa

10x4056: inc rax
——>»0x405c: test rax
10x4062: je 0x4099

0x4000: push rax
0x4005: push rbx
0x400a: jmp 0x4056

Basic Block 2

Basic Block 1 Basic Block 3

Figure 2: Explaining control flow errors

The sound proxy oracle is the collected execution trace T (set
of unique instructions across runs). We evaluate the errors in a
disassembler by checking all instructions in T for an error, i.e.,
x € T without a matching y in the disassembly. As the proxy oracle
is sound, a mismatch from this process is guaranteed to be an error.

There are inherent tradeoffs in identifying the correct assembly
code or, conversely, the errors in the disassembly. Our approach
has the advantage that it is not dependent on any compilers or pro-
gramming languages, nor does it need any meta information such
as symbols. From the perspective of this paper, the most important
property is the sound by-construction guarantee. The limitation is
that unless the combined execution traces cover all the code, this
approach will be inherently incomplete. However, as guaranteeing
soundness and completeness is impractical, this is a reasonable
tradeoff choice. In this paper, we implement and investigate the ef-
fectiveness of the sound approach. As far as we know, this approach
has not been seriously investigated.

4 Implementation

The implementation of TraceBin is designed to meet requirements
R1to R4. It consists of three parts: (i) The binary is run to collect the
trace (unique instructions executed); (ii) Disassemblers are run to
collect their disassembly result; and (iii) Comparison of instructions
in trace vs the disassembly. An overview of the TraceBin steps is
given in Figure 1. Although trace collection may seem simple, a
practical tool must be efficient and scalable. We use dynamic binary
instrumentation (DBI) to collect the unique instruction trace with
DynamoRio [20] (other DBI are feasible). Our prototype focuses on
x64 binaries on Linux.

The basic dynamic binary instrumentation checks whether a ba-
sic block has been executed before or not (we employ a hash table).
Working at the basic block level is much more efficient than pro-
cessing instructions one by one, e.g., running blender (SPEC 2017)
takes 173s native (without DBI), 233s collecting unique instruction
trace with our basic block approach, while instrumentation per
single instruction level takes 40,829s. Our instrumentation is more
efficient as it avoids processing the individual instructions for sub-
sequent executions of a basic block. In our evaluation, we found
that the overheads of DBI and tracing are reasonable.

Although the current implementation uses DynamoRIO, a user-
space instrumentation tool, it can be extended to support kernel
space binaries. While outside the scope of this paper, one way to
evaluate disassembly of kernel space binaries is to use kernel-space
instrumentation tools like KProbes [33], LT Tng [32], or DynamoRio
as a kernel module (DRK) [31].

We also capture details of control flow transfer (direct and indi-
rect) instructions during execution, recording the sets of source and
destination addresses of instructions. This provides the control flow
explanation feature in TraceBin. After finding a disassembly error,

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

there are some possible explanations, and TraceBin flags potential
reasons for the control flow error. First, it distinguishes between
source and target control flow possibilities: (i) a source error is
when the original control flow instruction is not in the disassembly,
i.e., a (partial) basic block is missed; and (ii) a target error when
the control flow target of the control flow is missed, although the
control flow instruction itself is correctly disassembled. Figure 2
illustrates these cases; consider when basic block 1 is disassembled,
but basic blocks 2 and 3 are not. The jump instruction in Basic Block
1 is the source, and Basic Block 2 is the target. As basic block 2
is missed, this is case (ii) above (target error). Because the control
flow within block 2 is not disassembled, basic block 3 is also not
disassembled, and we consider block 3 to be case (i) above (source
error). An example of case (ii), which shows the control flow error,
can be seen in Appendix E.1. These checks are further extended to
call-return control flow to determine the context of control flow
errors there. We find sometimes disassemblers do not correctly
disassemble the continuation of a function call after a return (see
Section 5 Q2).

TraceBin normalizes the virtual address of the instruction to
the base address captured during runtime instrumentation. More
specifically, an instruction x in the trace has its address addr(x)
adjusted by subtracting the base address of the corresponding text
section of the code. This deals with differences in runtime code
addresses which can occur such as through ASLR and PIC. The
mapping between instruction x in the trace and instruction y in
disassembly is then direct, i.e., addr(x) = loc(y).

We also support the merging of trace sets, combining multiple
runs into a single trace. Merging trace sets can substantially enhance
evaluation coverage, e.g., merging executions of the rar binary with
various options can expand the trace from 3.8K unique instructions
to 22K unique instructions.

Every disassembler has its own output format. We leverage the
framework in OracleGT [1, 2] to simplify gathering the assembly
output from each disassembler evaluated. Some disassemblers as-
sign different base addresses, e.g., ghidra adds 0x100000 to the base
address while angr adds 0x400000 for non-PIC binaries. We also nor-
malize all these addresses in order to make a comparison with the
trace. Essentially, we find disassembler errors by cross-referencing
every instruction in the trace against the static disassembly to deter-
mine if there is a (disassembly) error. The limitation of our approach
is that we are limited by instruction coverage from the union of
merged trace sets.

We also assume that the user of TraceBin knows how to use and
run the binary. Fuzzing techniques can also be used to increase
coverage. We remark that binaries that require complex disassembly,
where more than one disassembly is possible due to self-modifying
code and overlapping instructions, can also be dealt with using
extensions of our approach.

5 Evaluation

We evaluate TraceBin on Q1 to Q6 on programs from SPEC CPU
2006 and CPU 2017 by merging the test, train, and ref workloads,
closed source binaries (RAR, Tigress, PNGOUT, and CUDA), and
some test programs. The SPEC programs contain C, C++, and For-
tran code. For C/C++ code, gcc 9.4.0 and clang 10.0.0 are used. We

Wijayadi et al.

will sometimes refer to a SPEC program by its binary filename for
disambiguation. For Fortran code, gfortran 9.4.0 is used for For-
tran only code, and when the code is a mix of Fortran and C, we
use gfortran & gec or flang 7.0.1 & clang depending on whether
the evaluation is on gcc or LLVM. Binaries are all x64 binaries on
Linux. The disassemblers evaluated are popular ones: linear sweep:
objdump, and recursive-descent: angr, ghidra, radare2, and ida.? We
focus the evaluation on open source disassemblers because they are
not encumbered, but we have also added ida given its popularity
as a commercial disassembler and often said to be “best of class”.

As we use default options in the compilers except for the opti-
mization level, binaries that are compiled with gcc have PIC enabled,
while those compiled with clang do not. Experiments are run on
Ubuntu 20.04. For brevity, when we say “with gcc” or “with clang”,
it is a short form for “compiled with gcc/clang”.

The reason for using SPEC 2006 and 2017 is two-fold. Firstly,
SPEC 2006 has been used in previous works [1, 3], which allows
some comparisons. We highlight that although the evaluation may
seem similar to [1, 3], it is quite different because we do not use any
source code or compiler toolchain in the disassembler evaluation.
On the other hand, [1, 3] require source code, which means that it
does not evaluate disassemblers with only binaries and does not
apply to target binaries. Additionally, we evaluate SPEC 2017.

Secondly, the SPEC programs are defined by their workload. This
means that due to the nature of SPEC, only the coverage of the
execution from the workload defines the SPEC code, and other parts
of the code are not significant from the SPEC perspective. As such,
a complete disassembly is also not needed for SPEC; instead, the
relevant code is covered by the workload.

The coverage of the disassembly with TraceBin depends on what
has been executed. With the SPEC benchmarks, the workloads are
predefined as such there is a fixed coverage for the SPEC benchmark.
Separate from TraceBin, which only collects (merged) execution
traces, we have also collected the coverage for both SPEC 2006 and
2017 benchmarks combining on the workloads (test, train, and ref).
The coverage is obtained by compiling the benchmarks using gcc
with turn on the coverage flag to instrument code for coverage
analysis and using the coverage is obtained with gcov. Note that as
coverage is independent of TraceBin, it can be collected separately.
We highlight that the purpose of the coverage statistics is simply
to understand how much of the SPEC benchmarks are covered in
the disassembler evaluation when SPEC has been used. Coverage
of the binaries with respect to the source code is possible for SPEC
benchmarks simply because source code is available. For a target
binary without source code availability, it will not be feasible to
have source code coverage.

On average, SPEC 2006 and 2017 achieve 47.5% coverage. The
highest coverage is observed in mcf 2006 at 88%, while the lowest
is in imagick 2017 at 9.1%. As SPEC workloads are intended for
performance evaluation, it is expected to be lower for imagick
which is an image processing utility since it would only exercise
part of the functionality of imagick. Still, disassembler errors are
found in imagick.

8Details of the disassembler versions are: objdump 2.34 (https://ftp.gnu.org/gnu/
binutils), angr 9.2.79 (https://github.com/angr/angr), ghidra 10.3.1 (https://ghidra-
sre.org) and radare 5.8.8 (https://github.com/radareorg/radare2). ida 7.6 (https://hex-
rays.com/)

https://ftp.gnu.org/gnu/binutils
https://ftp.gnu.org/gnu/binutils
https://github.com/angr/angr
https://ghidra-sre.org
https://ghidra-sre.org
https://github.com/radareorg/radare2
https://hex-rays.com/
https://hex-rays.com/

Evaluating Disassembly Errors With Only Binaries

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Table 1: Overall results for SPEC 2006 & 2017 binaries: v': no errors (Z column); #programs with range of errors found-A: 1-80
errors, B: 81-410 errors, C: 410-978 errors, D: 1010-112351 errors; T: total number of instruction errors for all programs in A to D

Compiler Flags objdump angr ghidra radare2 Ida
Z A B C D T A B C D T A B C D T A B C D T

gee -0O0 v 1 0 0 0 9 3 0 1 4 62855 | 4 5 4 13 242079 | 11 O 0 8 88249
gee -00 (strip) v 4 0 0 0 42 30 1 4 6285 | 5 5 4 12 233383 | 21 3 0 8 89375
gee -03 v 5 0 0 0 28 6 1 1 6 58303 | 5 5 3 56762 2 4 4 7 39635
gee -O3 (strip) v 7 0 0 0 52 6 2 0 6 57747 | 6 2 3 7 60061 3 4 4 7 40853
gec -03 lto v 4 0 0 0 27 5 4 1 7 64442 | 1 5 1 11 58421 3 0 10 48847

cc -O3 -flto (stri v 10 O 0 0 133 5 4 1 7 64442 | 4 4 1 11 70568 5 4 0 10 53862
8 p
clang -O0 v 23 17 0 0 34480 1 0 O 147 16 10 2 12 140951 [23 17 O 0 3440
clang -O0 (strip) v 23 17 0 0 3482 |0 1 0 O 147 16 10 2 12 150748 [23 17 O 0 3440
clang -O3 v 23 17 0 0 32083 3 3 4 27470 | 19 9 5 7 66355 |23 17 0 0 3206
clang -O3 (strip) v 23 17 0 0 3208 3 3 3 4 27545 8 4 1 27 544840 | 19 16 O 5 25133
clang -03 -flto v 23 17 0 0 32085 4 3 6 47091 |17 8 4 11 165568 |23 17 O 0 3208
clang -O3 -flto (strip) v 23 17 0 0 3208 | 5 4 3 6 47117 | 6 4 3 27 774288 | 17 17 1 5 34220

To discuss specific results, we use the notation { Opt+Dis, Qualifier)

for flexibility and compactness where Opt is the compilation options
for the binary, Dis is the disassembler evaluated and Qualifier fur-
ther restricts the result. For example, (Clang -00 + ghidra, gobmk)
gives the number of disassembly errors from ghidra found with the
gobmk benchmark. The qualifier may also be a column name, e.g.,
column D in {(gcc -00 + radare2, D).
Q1 (Correlation with existing studies) In this paper, we exper-
iment with a sound ground truth proxy oracle approach, which
differs from existing evaluations for an alternative approach. While
there are comprehensive evaluations of disassembler accuracy [1-
3], they do not use (sound) ground truth oracles. We highlight
that there is a tradeoff between soundness and completeness, so
it is a choice. Here, we investigate the accuracy of disassemblers
purely from a soundness perspective to complement other forms
of evaluation. Given that different oracle tradeoffs are not directly
comparable, we can still see how results correlate. We caution that
any comparison with previous works should account for compiler
and disassembler versions, and we use a larger SPEC benchmark
(SPEC 2006 and 2017).

Table 1 gives overall results for the binaries tested. Rows are
binaries created under the option in column Flags. Two programs
from SPEC 2017 (hybrid C & Fortran), wrf and cactus, are omitted
due to known compilation issues with -f1lto. Pure Fortran pro-
grams are discussed separately. Altogether, there are 23 SPEC 2006
and 17 SPEC 2017 programs in Table 1. Binaries are not stripped
except for rows that explicitly mention it. Column Z (with ') shows
no errors were found with objdump. Columns from A to D give the
number of programs where the disassembler was found to have
errors within a certain range, e.g, column A counts the number of
programs giving 1-80 errors. The idea for this presentation is: (i)
to make it easier to visualize the errors on a configuration (row);
(ii) to show the number of programs where the disassembler has
errors together with (iii) a measure of the degree of errors (A (least)
to D (most)).

To illustrate our table, it shows with gcc -00, eight programs
(SPEC 2006: dealll, and povray, SPEC 2017: perlbench, parest, pov-
ray, imagick, cam4, and gcc) have disassembly errors with ghidra,
i.e., (A=3, B=0, C=1, D=4). This presentation makes it easy to see

that changing from cc -00 to cc -03 gives (A=6, B=1, C=1, 6), so
many more binaries now have errors (change in A-D) by increasing
the optimization level, and there are also more errors per binary
(not shown in table). The T (Total) column gives the total number
of instruction errors found across all binaries in the 4 columns (A
to D) for that row. We highlight that T is a different metric being
instruction errors found while A to D are number of binaries with
errors found. The Z column shows that no errors were found with
objdump (but see the later investigation into objdump). This result
is consistent with previous evaluations [1, 3], which report high
accuracy for linear sweep disassemblers.

We highlight that our presentation of the errors on SPEC is meant
to show the errors found in a disassembler on various binaries, e.g.,
with gcc -00 we see only one program is affected by errors in angr
(A=1, B=C=D=0) but with ghidra the effect is greater (A=3, B=0,
C=1, D=4) (possibly with greater consequences for these errors and
across more software/binaries). The result presentation in [1, 3]
differs, focusing on error statistics as a whole, e.g., the T column.
Our presentation instead is targeted towards our goal of evaluating
errors with target binary, so while Table 1 has statistics, it focuses
more on the binaries themselves and variations in binaries arising
from creation options such as optimization level, etc. To summarize,
the presentation of errors in [1, 3] is totally different, focusing on
aggregate errors.

We now discuss recursive descent disassemblers, and all had
errors. Table 1 shows that angr has the best overall performance
for the recursive disassemblers on these binaries. This is because
columns C & D are 0 for all rows, indicating there is no large number
of errors per binary for angr. By contrast, ghidra has a smaller A
column for many rows but larger B to D columns, which suggest
a larger impact with more more errors when they occur (more
binaries have errors and more instruction errors). We can see that in
terms of error impact across programs and compilation options, ida
has more programs having errors than angr, and columns C & D are
not zero columns, i.e., there are binaries with a significant number
of errors, whereas angr has zeroes in C & D. The T column (total
aggregate errors) is smallest for angr as well. We might be tempted
to order performance as angr > ghidra > ida > radare2 where >
denotes “better”.

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

However, Table 1 is only meant to give the overall picture by
aggregating the results. In the detailed results (not shown), we find
that no recursive disassembler dominates all other recursive ones,
i.e., no disassembler is strictly better than the others. This may be
surprising since radare2 seems to have the worst overall results in
Table 1.

Some examples showing non-dominance follow. In gobmk SPEC
2006, angr is worse than ghidra: (Clang -00 + ghidra, gobmk) =
0 vs (Clang -0@ + angr, gobmk) = 60. Conversely, in sjeng SPEC
2006, ghidra is worse than angr: {(gcc -03 + angr, sjeng) = 0 vs
(gcc -03 + ghidra, sjeng) = 1331. Similarly, perlbench SPEC 2006
shows radare2 is worse than ghidra: (gcc -00 + radare2, perlbench
) = 13869 vs (gcc -00 + ghidra, perlbench) = 0. However, when
the same binary is compiled with gcc -03, ghidra is worse than
radare2: (gcc -03 + ghidra, perlbench) = 7016 vs (gcc -03 +
radare2, perlbench) = 9. Turning to ida and omnetp 2017, ida is
worse than the other recursive descent disassemblers: (gcc -00 +
ida, omnetp) = 3542 vs (gcc -00 + radare2, omnetp) = 431; while
ghidra and angr have 0 disassembly errors found on the same binary.
On the other hand, ida is better than ghidra for cam4 2017: (gcc
-00 + ida, cam4) = 0 vs {(gcc -00 + ghidra, cam4) = 3333. We
see that the detailed results give a very mixed picture showing
that overall general performance cannot easily be extrapolated to
specific binaries.

The example below is a disassembly from ida of omnetpp 2006
compiled with gcc -00:

17b6fc: callq 17ae81

17b701: jmpq 183137

17b706 : (not disassembled)
ida does not disassemble instructions in the address range 0x17b706
- @x17b7f3, but those instructions are correctly disassembled by the
other recursive descent disassemblers (radare2, ghidra, and angr)
showing that in a portion of the binary, ida gives a worse result the
other disassemblers eventhough radare2 is generally worse. More
examples for all recursive descent disassemblers (angr, ida, ghidra,
and radare?) to illustrate non-dominance are given in Appendix C.

Table 1 also shows errors in recursive disassemblers depending
on how the binaries are created. Previous works [1, 3] suggest
that higher optimization has an effect and that higher optimization
levels may result in more errors. The existing results are what one
might expect. We now discuss our results, focusing on -00 vs -03
(LTO is discussed later) and present a more nuanced view. There
are cases where -00 is worse than -03: (i) (gcc -00 + radare2,
D) = 13 vs (gcc -03 + radare2, D) = 6 and the total errors go
from around 242K down to 56K; (ii) similarly for clang -00 to -03
on radare? the total errors decrease. Thus, we see that while -03
can present more challenges, -00 also has challenges for existing
recursive disassemblers.

We expect the number of errors to increase when the symbol ta-
ble is unavailable, i.e., stripped binaries. Table 1 shows the expected
result in the aggregate. However, there are some counter-intuitive
instances. The opposite effect, stripped has fewer errors than non-
stripped, can be seen in: (gcc -03 + ghidra, imagick) = 710 while
(gcc -03 strip + ghidra, imagick) = 154. There are also cases when
the number of errors increases significantly when stripped, e.g.,
(gcc-03 + radare2, cactus 2006) = 754 vs (gcc -03 strip + radare2,
cactus 2006) = 5159. We remark that this seems to be a new finding

Wijayadi et al.

as it is not reported in previous works [1, 3] (while this is part of
our new results, it is mentioned in this section to be in the context
of the Table 1 discussion).

Q2 (Control flow errors) Table 2 shows the result of disassem-
bly errors caused by control-flow instructions in the SPEC bench-
marks, focusing on the instructions in a control-flow transfer that
are missed in the disassembly. The table is divided into four cate-
gories: cbr (conditional branch), indirect, direct, and return. The
table shows the number of errors found using the control flow
explanation feature in TraceBin for each disassembler.

The number of errors is counted as the total number of instruc-
tions in the missed target basic block B. However, this may not
account for all the control flow errors as B may have further control
flow transfer to another basic block B’. The errors due to B’ are not
counted in this table (see Section 4, control flow explanation case
(i)) because we do count for the transitive effect of control flow er-
rors beyond B in our implementation so that the trace collection is
efficient. We account indirectly for these errors as they are included
in the total errors in Table 1. Examples of control flow errors found
are given in Appendix E.

We see the main cause of control flow errors is due to indirect
jump/call—indirect control flow errors dominate others in Table 1.
Examples of indirect control flow errors are in Appendix E.4). Con-
trol flow errors are expected for the recursive descent disassemblers
since heuristics are used to determine the target of the indirect cal-
1/jump. What is surprising is disassembly errors in angr, ida, and
radare2 for unconditional and conditional direct call/jump. We did
not expect that the disassembler would have control flow errors
on control flow transfers, which are direct. The example below is a
result from radare2 of Xalan 2006 compiled with clang -00.

4ae3db: callg 5d1080

4ae3e0: mov %rax,-0x2d8(%rbp)
4ae3e7: jmpq 4ae3ec

4ae3ec: (not disassembled)
4affal: (not disassembled)
4affa2: lea -0x28(%rbp),%rdi
4aff46: callq 4f9980

4aff4b: jmpq 4aff63

radare2 only disassembles until address @x4ae3e7, does not disas-
semble from address @x4ae3e7, and restarts disassembly again at
address 0x4aff42. The jump instruction at address 4ae3e7 works
like no-op instruction as it just jumps to the exact next instruction.
This example also shows that clang can systematically produce
redundant jumps as the target of the jump is the next instruction
(at @x4ae3ec). We conjecture that code which is unusual (e.g. sys-
tematic redundant jump) may have poor interaction with heuristics
in disassemblers, being unexpected code.’

We also show that ida can miss the target of direct call when
disassembling Xalan 2017 with gcc -00, see details in Appendix
E.1, Listing E.1. Similarly, conditional branches also have errors,
e.g., SPEC 2006 omnetpp with gcc-03 -flto + stripped, the fall
through of the conditional branch is missed by angr, see Appen-
dix E.2. Instructions following a return were also missed. On SPEC
2006 cactusADM with clang-03 -flto; despite the caller being

%In this work, we do not try to understand the code within the disassembler which
creates errors. Also ida is closed source.

Evaluating Disassembly Errors With Only Binaries

Table 2: Control flow errors found in recursive descent disas-
semblers

Disassembler
Control Flow | Angr | Ghidra | Radare2 | Ida
cbr 76 4 4786 0
indirect 19725 | 55685 192749 82771
direct 7 0 740 297
return 0 10 114 0

correctly disassembled, instructions following the return are miss-
identified by ghidra, as shown in Appendix E.3. We remark that
these examples are consistent with the disassemblers using heuris-
tics, which may not be sound. We also highlight that the hardening
of control flow can be important to CFI-style security applications,
i.e., identifying and preventing undesired control flow. Evaluating
a target binary on such errors will be relevant to such security
applications.

Q3 (New disassembler issues) We now discuss some interest-
ing classes of errors found. As far as we are aware, these are not
discussed in [1-3].

(PLT) We found that the Procedure Linkage Table can cause disas-
sembly difficulties. Binaries compiled with clang have PLT sections
that are not correctly disassembled by angr, ida, and radare2. The
example below shows a disassembly of a typical PLT entry that has
the code pattern jmp, push and jmp if the binary is compiled with
clang.

401030: jmpq «0x2fe2(%rip)
401036: pushq $0x0
40103b: jmpq 401020 <.plt>

The code after the first jmp instruction is missed.

Personal communication with authors of [1] confirmed that Or-

acleGT, did not collect instructions in the PLT section. This is not
intended as a criticism of the toolchain approaches, as modifying a
compiler can be complex, and it is difficult to confirm if any changes
capture all the required information. However, this shows the dif-
ficulty of getting guarantees with compiler toolchain approaches,
and their proxy oracle may be incomplete.
(Instructions after function epilogue) We found cases where
ghidra and ida failed to detect certain instructions after an instruc-
tion pattern similar to the function epilogue. We found this with
SPEC 2017 xz compiled with gcc -03 -flto. The ret instruction,
together with several instructions before it, may be considered to
be part of a function epilogue. It appears that disassemblers may
use the heuristic of stopping disassembly once a function epilogue
is reached, but in general, it is still possible that there can be code
after the return.

The example below is a disassembly of xz by ghidra and ida of
xz 2017 compiled with gcc -03 -flto.

106f1: pop %r14

106f3: pop %115

106f5: retq

106f6: ... (not disassembled)

10ae0: endbr64

Firstly, the address 0x106f6 is not disassembled. As no instruc-
tion at that address was executed, TraceBin does not say anything

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

about whether there is a correct or erroneous instruction at that
address. In the trace, instructions at addresses 0x10700- 0x10acf
are executed but is not shown in the disassembly, hence are dis-
assembly errors in ghidra and ida. Basically ghidra and ida miss
instructions from addresses 0x10700- 0x10@acf until it continues
with the endbr instruction.

We observe that the instructions at 0x106f1- 0x106f5 look like
a function epilogue. This could be interacting with a heuristic in
the disassemblers which may assume there are no instructions after
what looks like a function return. We did not observe this particular
problem in radare2, angr, and objdump.

(O3 + LTO) Link Time Optimizations (LTO) is a form of whole
program or global optimization in gcc and clang compilers, which
can significantly change the structure of code. Table 1 shows that
-03 with the addition of LTO gives significant changes in the dis-
assembly errors. In some cases, the number of affected binaries
decreases, but the total number of instruction errors is worse (see
the T column). We give a gcc example result. Evaluating h264ref
from SPEC 2006, we get (gcc -03 + radare2, h264ref) = 276 and
(gcc -03 -flto + radare2, h264ref)= 6176, so turning on LTO
causes many more errors.

(CET and control flow) Intel Control-flow Enforcement Technol-
ogy (CET) is Intel’s hardware-based Control Flow Integrity (CFI)
defence [30]. A simple explanation of the CET hardware CFI is
that the control flow target of a call or jump instruction must be a
special endbr instruction. A binary that is compiled with CET en-
abled will have more instructions in it due to the additional endbr
instructions. Given that endbr always denotes the call/jump target,
we may expect that it might be used as part of a heuristic to find
more instructions. In particular, a recursive descent disassembler
can easily expand code coverage with a heuristic that searches for
the endbr instruction, perhaps with other conditions.

To evaluate the effect of CET, we create a small test program
that uses a jump table, see Appendix A. With gcc we can turn
on CET with -fcf-protection=full or disable the use of CET
with -fcf-protection=none compiler options. Table 3 gives the
number of errors on the test program with CET on or off. radare2
does not disassemble the jump table portion of the binary when
CET is not used in the compiled instructions but does disassemble
it correctly if the CET instructions are compiled in. This suggests
radare2 uses a similar heuristic to what we proposed with CET.
In ghidra and ida, the indirect jump targets are not found even
when CET is enabled. There are more missed instructions in ghidra
and ida with CET because there are more instructions in the CET
binary. The fact that angr has no errors could potentially be due
to angr also incorporating a linear sweep heuristic together with
recursive descent. Finally, objdump had no errors as the instructions
happen to be contiguous.

Apart from investigating the CET heuristic, the example code in
Appendix A can also be used for testing the indirect control flow
errors in recursive descent disassemblers. Without the CET instruc-
tions, all recursive descent disassemblers failed to disassemble the
target of the indirect jump as all of them have the same number
of errors (14 errors); these 14 instructions correspond to the target
of indirect jumps in lines 15-17 of Listing A, Appendix A. Such an
error can also be confirmed by TraceBin by using the control flow
explanation feature.

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Table 3: Comparison of Disassembly Errors With and With-
out CET

With CET Without CET

Ghidra 19 14
Radare 0 14
Ida 17 14
Angr 0 0
Objdump 0 0

Q4 (Non C/C++ binaries) Apart from programs that consist of C
or C++, we also evaluate Fortran programs, as TraceBin is agnostic
to the compiler and programming language. Thus, this experiment
is to show that TraceBin can be used on Fortran binaries to evaluate
disassembly errors, illustrating Requirement R2 (compiler/language
agnostic). We use the gfortran 9.4.0 and flang 7.0 compilers with
-00 and -03 to create the binaries. We evaluated nine binaries that
contained Fortran code in SPEC 2006 and SPEC 2017. Table 4 shows
the number of errors found for various Fortran binaries. There is no
column for objdump because we found no errors with it. We see that
Fortran also introduces some errors in disassemblers. Interestingly,
errors are mostly found in radare2 for some of the Fortran programs.
The errors in angr and ida are only found in binaries compiled by
flang. This is due to the issue discussed earlier, which was missed
instructions in the PLT section. There is also no dominance in the
recursive disassemblers but perhaps ghidra may be considered to
have an edge with fewer errors.

Q5 (Closed source binaries) Previously, we evaluated binaries
built by compiling from source code with various compilers and
options. This is precisely so that we can then compare with existing
works [1, 3], which use the SPEC benchmarks, but they use source,
and we do not. The main use case for disassemblers is when only the
binary is available, i.e., tantamount to closed source binaries. Since
TraceBin has no compiler dependence, we can use it to evaluate the
accuracy of disassemblers where only the binary is available. Still,
the compiler-based approaches for the ground truth oracle [1, 3]
are simply not applicable.

We evaluate binaries from the following software: RAR 7.0 [23]
(a popular archiver) with rar and unrar binaries, Tigress 3.1 [24]
with the cilly.native binary, CUDA Binary Utilities [35] 12.4
with the nvdisasm binary, and PNGOUT 20200115 [36] with the
pngout binary. We chose Tigress because it is an academic obfusca-
tor that works by C to C transformation. It is deliberately distributed
only in binary form. We thought it would be interesting to test an
obfuscator.

The workloads used with TraceBin are the following. We exe-
cuted rar and unrar using a range of operations, including com-
pressing a directory, listing the contents of the archive, and ex-
tracting the archive. cilly.native uses the supplied test in its
distribution. nvdisasm is used to disassemble the cubin (CUDA
binary) file that is compiled from the cuda code sample. pngout
is used to optimize a png sample file. Table 5 shows the results.
Interestingly, no errors were found with objdump, which suggests
no inline assembly code in those binaries. All the recursive disas-
semblers had errors. As with previous results, we see that ida does
not have superior results.

Wijayadi et al.

Table 4: Disassembly Results for Fortran.

Benchmark ‘ Angr ‘ Ghidra | Radare2 | Ida
gcc -00 Optimization
gamess 0 0 1475 0
bwaves 0 0 0 0
SPEC 2006 | leslie3d 0 0 9624 0
zeusmp 0 0 0 0
GemsFDTD | 0 0 32537 0
tonto 0 0 769 0
fotonik3d 0 0 10116 0
bwaves 0 0 0 0
SPEC 2017 roms 0 0 22998 0
exchange 0 0 0 0
gcc -03 Optimization
gamess 0 16083 1109 0
bwaves 0 0 0 0
SPEC 2006 | leslie3d 0 0 0 0
zeusmp 0 0 0 0
GemsFDTD | 0 0 20567 0
tonto 0 0 1316 0
fotonik3d 0 0 1316 0
bwaves 0 0 0 0
SPEC 2017 roms 0 430 2402 0
exchange 0 0 403 0
clang -00 Optimization
gamess 100 24 4531 100
bwaves 34 0 36 34
SPEC 2006 | leslie3d 56 0 58 56
zeusmp 38 0 40 43
GemsFDTD | 134 0 13420 134
tonto 174 0 176 174
fotonik3d 64 0 10182 64
bwaves 40 0 42 40
SPEC 2017 roms 78 0 23078 78
exchange 68 0 70 68
clang -03 Optimization
gamess 102 204 352 102
bwaves 34 0 36 36
SPEC 2006 | leslie3d 54 0 56 54
zeusmp 40 0 42 40
GemsFDTD | 136 0 15464 136
tonto 172 0 174 172
fotonik3d 64 0 1382 64
bwaves 36 0 38 36
SPEC 2017 roms 82 430 2486 82
exchange 64 0 475 64

Q6 (Security implications of disassembler errors) We now
investigate if a disassembler error can lead to a security failure,
expanding on the two motivating examples from Section 1. For this,
we will use trojanized binaries with implanted vulnerabilities. A
security failure will be if the disassembler fails to disassemble the
vulnerabilities, which may mean that the trojaned binary may be
viewed as being equivalent to the original benign binary.

Evaluating Disassembly Errors With Only Binaries

Table 5: TraceBin Result For Closed Source Binaries

Tool Objdump | Angr | Ghidra | Radare2 | Ida
rar 0 172 0 906 105
unrar 0 146 0 265 146
cilly.native | 0 96 2876 3546 12
nvdisasm | 0 104 0 10434 113
pngout 0 0 0 41 0

Consider a binary B, the goal of an attacker may be to present
a trojan form of B, namely B’ containing an implanted vulnera-
bility. B’ is crafted so that the vulnerability is not disassembled
by disassembler A by leveraging on specific errors occurring in
the disassembly of B. We present two different attacks which give
a proof-of-concept (PoC) using this idea. Firstly, we find various
disassembly errors in B when disassembler A is used. Then, we
either patch B to B’ with binary patching or, alternatively, modify
the source and recompile to obtain B’. The trojan binary B’ now
has deliberately introduced vulnerabilities. To determine if the PoC
is successful or not, we check that in the disassembly of B’ with
disassembler A to see whether or not the vulnerability is present.
Our two PoCs follow: (details are in Appendix D)

I Direct code patching of cpugcc 2017 to cause an exception using
the ud2 instruction. By using desynchronization, we can trick
the disassembler using linear sweep (angr and objdump). It
also happens that this code region is also missed by radare2
and ghidra because it is called from an indirect jump. There-
fore, the patched ud2 instruction is not found by four disas-
semblers (objdump, angr, radare2, and ghidra), i.e., the crash-
ing behavior is not possible in the binary imagined by the
disassembler, but it occurs in the ground truth. Furthermore,
TraceBin confirms that the ud2 instruction is executed, as
shown in Listing D.1 Appendix D. A similar strategy can be
applied to confuse ida on the xz 2017 binary.'® We modified
xz from SPEC 2017 binary compiled with gcc -00 to demon-
strate that disassembly error in ida can also be trojanized in
a similar way to D.1 and D.2. The disassembly result for xz
2017 gcc -00 from ida follows:

19861: 48 01 d0 add %rdx ,% rax
19864: 3e ff e0 jmpq «%rax
(not disassembled)

We see that it does not disassemble instructions after address
0x19864 to address 0x1987f.
We change the instruction at address 0x19687f to INT3,
which will introduce a breakpoint when executed. The re-
sult from TraceBin can be seen in the code below, which
confirms that the INT3 instruction is executed; however, it
is not disassembled by ida.
0x19861: 48 01 do add
0x19864: 3e ff e0 jmpq *%rax

0x19878: 80 bd 2f ff ff ff 00 cmpb $0x0,-0xd1(%rbp)
0x1987f: cc int3

%rdx ,%rax

10y 7 was itself the target of a supply chain attack recently (https://www.synopsys.
com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html).

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

IT Patching at the C++ source code level of Xalan 2006. We add a
new global variable. The patch contains one vulnerability
with data corruption of the global variable. We also add a
new function (bad()) and a vulnerability which calls bad ().
After the patched source is recompiled, the new binary B’
has the two introduced vulnerabilities. This is also confirmed
by TraceBin. However, radare2 misses both vulnerabilities
in the disassembly: (i) the data corruption exploit, i.e., modi-
fication of global variable, and (ii) the call to bad (). Unfor-
tunately, both vulnerabilities are indeed executed but not
disassembled.

These examples show that a stealthy trojan binary B’, which is
very similar to the benign binary B with implanted vulnerabilities
not found in the disassembly, can be systematically constructed
using TraceBin. Note that as this is a binary attack, evaluation
techniques which rely on source will not apply. In cases where the
disassembly is used for a security task such as control flow analysis
(example I), taint tracking (example II, variable modification), and
control flow integrity (example II, call to bad), a binary could be
modified to escape the application of a hardening defense built using
the disassembly. This shows that in binary security applications,
which often rely on disassembly as the initial step, an evaluation of
errors in the disassembly may be needed. This can be useful even
if not all errors in the disassembly can be found.

We remark that a disassembly error is not necessarily a bug in a

disassembler simply because we do not expect the disassembler to
be both sound and complete. So, while a disassembly error could
be due to a specific bug, it could also be a feature, meaning it is a
consequence of the disassembler being neither sound nor complete.
It should also be obvious that these PoC examples may also bypass
the manual reverse engineer as they would have to recognize that
the vulnerabilities are not being disassembled. For example, cpugcc
compiled with gcc -03 has 1.9M instructions.
Investigating objdump Although the overall result indicates that
objdump is the most accurate tool when evaluated with TraceBin,
it is well known that the linear sweep algorithm can be tricked by
inserting appropriate “data in code” into the text segment, resulting
in desynchronization of the instruction stream leading to errors. We
investigate desynchronization using inline assembly. The example
code is given in Appendix B, Listing B. We found that objdump is in-
deed easily desynchronized using that code. The desynchronization
results in completely different effects and instructions, including
incorrect control flow, i.e., a return instruction when there is none
in the ground truth, see Appendix Listing B (ground truth) and
Listing B (incorrect disassembly by objdump and angr). We remark
that this test assembly code fragment is designed to have only local
dependencies, but it can easily be inserted almost anywhere in C
code as it is semantically equivalent to a nop.

In addition, we found that angr, although being based on recur-
sive descent, was also desynchronized by this example. This may
be due to angr having a linear sweep heuristic to find code gaps [1].
This test found no errors with ghidra, ida, and radare2. We high-
light this was only meant as a trivial test of desynchronization, and
it also shows that ida, ghidra, and radare2 worked for this example.

Besides this example, we show that padding instructions within
a binary can be utilized to cause desynchronization, which does

https://www.synopsys.com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html
https://www.synopsys.com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

not disturb the runtime behavior of the binary. In the example in
listing D.1 in Appendix D.1, the instruction at address 0x3008d
is a padding instruction. After the binary is patched, the linear
sweep disassemblers will desynchronize and fail to disassemble the
instruction at x30090, which will later be executed by the binary.

We remark that although objdump appears to work well in most
of the evaluation, except this one, it may not be a replacement
for the proxy oracle. It is well known that the drawback of linear
sweep is the confusion of data in code, which is also what we
have shown. So the reliability of objdump will depend on whether a
compiler tries not to mix data inside the code. Whether or not this is
always possible may depend on the instruction set of the machine.
Then there is a question of whether the optimization objective is
to optimize to reduce code space or runtime. Also, the compiler
need not try to avoid data mixed with code, and there may be little
control over how the binary is produced. In a controlled setting, the
experimental setup is different as one can try to avoid occurrences
of data in code. Finally disassemblers based on recursive descent
heuristics exist precisely because the limitations of linear sweep
are well known.

6 Conclusion

Most works to evaluate disassemblers use some practical notion
of the ground truth oracle of the binary in order to compare with
the disassembly result. There are intrinsic tradeoffs, given that
disassembly is not practical to solve in the worst case. As such, there
is a tradeoff essentially between soundness and completeness. Most
works focus on enlarging the set of disassembly errors found but
may admit errors in the process given the chosen notion of ground
truth. A more serious problem is that most works, in particular
the comprehensive studies in [1-3], employ the compiler toolchain
and require the use of source code to evaluate disassembly errors.
Clearly, while source code can be used in a controlled experiment
setting, it cannot help in the binary-only setting, which is the main
use case for disassemblers.

In this paper, we investigate a simple alternative and explore the
tradeoffs given the difficulty of the disassembly problem with only
binaries. We use an incomplete but sound proxy oracle to evaluate
the disassembler. While this seems simple, it has the advantage
of a correct-by-construction approach. With the theoretical and
practical difficulties of imperfect oracles, it is unclear what other
approach can guarantee soundness. Existing disassemblers already
used unsound and incomplete approaches, but existing evaluations
of disassemblers use techniques that require source, rendering them
inapplicable in general.

We build a prototype tool, TraceBin, which uses dynamic binary
instrumentation to gather a unique instruction trace for comparison
with disassembly results from a disassembler. TraceBin is also more
sophisticated than a basic instruction tracer, incorporating optimiza-
tions. explanation, and unique instruction trace merging features.
Although our prototype is implemented with the DynamoRio DBI
framework, any DBI can, in principle, be used. The limitation due
to the binary setting is that our approach only guarantees sound-
ness and thus may not guarantee complete coverage of the all the
assembly code in a binary.

Wijayadi et al.

Our evaluation shows that TraceBin can usefully answer ques-
tions Q1 to Q6 while adhering to our requirements R1 to R4. In
particular, goal R3, no source code assumptions. We are not aware
of any similar work that does not use source code and compiler
toolchains together with substantial experimental results. We have
taken the design choice that out of the two possible guarantees,
soundness and completeness, that soundness is the choice to pick.
(It is unclear how to implement a complete approach with only
binaries). We also believe that tools which have guarantees are
just as important as empirical tools that do not have guarantees.
TraceBin gives soundness guarantees that disassembly errors are
indeed errors, only requiring binaries with minimal assumptions.
The evaluation shows its effectiveness and also gives interesting
results on errors in popular disassemblers.

We evaluate TraceBin on binaries from SPEC 2006 and 2017 built
under various options, closed source binaries, and synthetic bench-
mark. We show experimentally that TraceBin can: (i) give results
that are consistent with existing works analyzing disassembly er-
rors but without the use of source code; (ii) find causes of errors
from control flow instructions; (iii) find interesting errors in the
studied and popular disassemblers (objdump, angr, ghidra, radare2,
ida); (iv) find errors in Fortran binaries; (v) find errors in closed-
source binaries; (vi) shows the security implications of disassembly
errors. We illustrate by leveraging specific disassembly errors to
generate a PoC attack to hide vulnerabilities from the disassembler
with trojan binaries.

These results show that a soundness-based approach is a useful
tool when disassemblers are used as part of an automated security
solution starting from a binary. It can also be relevant in reverse
engineering, though it is not specially designed for that setting.
While there has been a large body of work both on investigating
disassemblers, there seems to be a lack of work for the binary-only
usage use case and non-manual uses of binary disassembly, which
may require evaluation of how good the security solution built on
top of disassembly.

Finally, while we expect that any heuristic chosen by the dis-
assembler may make errors given the intrinsic difficulties of dis-
assembly, the binaries selected are not malware and not specially
constructed to be worst case. Indeed, they may be considered “typi-
cal”. It was still a little surprising that we expected a better result
from ida, given that it is a commercial closed-source disassembler
and is reputed to be among the best. Still, we did not find it to
outperform open-source disassemblers in our evaluation, notwith-
standing that generalizations from experimental testing are difficult
to make.

Acknowledgments

We thank the shepherd and anonymous reviewers for their construc-
tive feedback. This research is supported by grant MOE-000460-01
and by the National Research Foundation, Singapore, and Cyber Se-
curity Agency of Singapore under its National Cybersecurity R&D
Programme (Fuzz Testing <NRF-NCR25-Fuzz-0001>). Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore and Cyber Security
Agency of Singapore.

Evaluating Disassembly Errors With Only Binaries

References

[1] C.Pang, R.Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and J. Xu. SoK: All
You Ever Wanted to Know About x86/x64 Binary Disassembly But Were Afraid to
Ask. IEEE Symp. on Security and Privacy, 2021

C. Pang, T. Zhang, R. Yu, B. Mao, and J. Xu. Ground Truth for Binary Disassembly

is Not Easy. USENIX Security Symp., 2022

[3] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H, Bos. An In-Depth
Analysis of Disassembly on Full-Scale x86/x64 Binaries. USENIX Security Symp.,
2016

[4] M. Laurenzano, M.M. Tikir, L. Carrington, and A. Snavely. PEBIL: Efficient static
binary instrumentation for Linux. IEEE Intl. Symp. on Performance Analysis of
Systems and Software, 2010

[5] AR. Bernat and B.P. Miller. Anywhere, any-time binary instrumentation. ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools, 2011

[6] V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc, A. Slowinska, H.
Bos, and C, Giuffrida. Practical Context-Sensitive CFI. ACM SIGSAC Conf. on
Computer and Communications Security, 2015.

[7] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. USENIX Security,
2013.

[8] E. M. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest. Automated repair of bi-
nary and assembly programs for cooperating embedded devices. Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems, 2013.

[9] R.N. Horspool and N. Marovac. An Approach to the Problem of Detranslation of
Computer Programs. Comput. J. 23(3), 1980.

[10] GNU. Objdump 2.34. Gnu.org, 2023. https://ftp.gnu.org/gnu/binutils/binutils-
2.34.tar.xz

[11] National Security Agency. “Ghidra 10.3.1”. https://ghidra-sre.org/, 2023.

[12] Y. Shoshitaishvili et al., "SOK: (State of) The Art of War: Offensive Techniques in
Binary Analysis," 2016 IEEE Symposium on Security and Privacy (SP), San Jose,
CA, USA, 2016, pp. 138-157, doi: 10.1109/SP.2016.17.

[13] angr . “angr v9.2.79”. https://github.com/angr/angr/releases/tag/v9.2.79, 2023.

[14] radareorg. “Radare 5.8.8”. https://github.com/radareorg/radare2/tree/
€a7f0356519884715cf1d5fba16042bac72b2df5, 2023.

[15] Hex-Rays. IDA Pro. https://hex-rays.com/ida-pro/, retrieved July. 2024.

[16] Binary Ninja. binary.ninja : a reverse engineering platform. https://binary.ninja/,
2021.

[17] S.S.Lab. “Psi: A platform for secure static binary instrumentation,” http://www.
seclab.cs.sunysb.edu/seclab/psi, 2019.

[18] B.P. Miller and X. Meng. Binary code is not easy. Intl. Symp. on Software Testing
and Analysis, 2016.

[19] C.Linn and SK. Debray. Obfuscation of executable code to improve resistance to
static disassembly. ACM Conf. on Computer and Communications Security, 2003.

[20] D.Bruening, Q. Zhao, and S. Amarasinghe. Transparent dynamic instrumentation.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE "12, pages 133-144, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1176-2. .URL http://doi.acm.org/10.1145/2151024.2151043.

[21] “SPEC releases major new CPU benchmark suite,” www.spec.org. https://www.
spec.org/cpu2017/press/release. html.

[22] “SPEC Releases CPU2006 Benchmarks,” www.spec.org. https://www.spec.org/
cpu2006/press/release. html.

[23] “RAR for Linux & Mac,” WinRAR download free and support. https://www.win-
rar.com/rar-linux-mac.html.

[24] Christian Collberg. The Tigress C Diversifier/Obfuscator. https://tigress.wtf/
index.html.

[25] X. Yang, Y. Chen, E. Eide and J. Regehr, Finding and understanding bugs in C
compilers. PLDI, 2011

[26] A.Dinaburg and A. Ruef, McSema: Static translation of x86 instructions to LLVM.
ReCon, 2014.

[27] https://github.com/lifting-bits/mcsema

[28] Y.Li, S. Ding, Q. Zhang and D. Italiano, Debug information validation for opti-
mized code. PLDI, 2020

[29] G.A.DiLuna, D. Italiano, L. Massarelli, S. Osterlund, C. Giuffrida and L. Querzoni,
Who's debugging the debuggers? exposing debug information bugs in optimized
binaries. ASPLOS, 2021

[30] V.Shanbhogue, D. Gupta and R. Sahita, Security Analysis of Processor Instruction
Set Architecture for Enforcing Control-Flow Integrity, Intl. Workshop on Hardware
and Architectural Support for Security and Privacy, 2019

[31] P.Feiner, A. D. Brown, and A. Goel, “Comprehensive kernel instrumentation via
dynamic binary translation,” ACM SIGPLAN Notices, vol. 47, no. 4, pp. 135-146,
Jun. 2012, doi: https://doi.org/10.1145/2248487.2150992

[32] M. Desnoyers and M. Dagenais, “The LT Tng tracer: A low impact performance
and behavior monitor for GNU/Linux,” 2006. Available: http://lttng.org/files/
papers/desnoyers-ols2006.pdf.

[33] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy, and M.
Hiramatsu, “Probing the Guts of Kprobes,” 2006. Available: https://www.kernel.
org/doc/ols/2006/0ls2006v2-pages-109-124.pdf.

[2

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

[34] R. Wartell, Y. Zhou, KW. Hamlen, M. Kantarcioglu, B. Thuraisingham. Differenti-
ating Code from Data in x86 Binaries. ECML/PKDD, 2011

[35] NVIDIA, “cuda-binary-utilities documentation,” docs.nvidia.com, 2024. Available:
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html.

[36] K. Silverman, “PNGOUT;” Jan. 05, 2020.

A Jump Tables

We evaluate the use of Intel CET instructions as a heuristic for
recursive descent disassemblers with the simple code in Listing A.

Listing 1: Jump table for CET benchmark

1. int main()

2. {

3. void » table[] = {&&tl, &&t2, &&t3};
4. int idx=0, order[] = {1, 0, 2};

5.

6. loop :;

7. void =addr = table[order[idx]];

8. goto «addr;

9. loop_end:

10.

11. ++idx ;

12. if (idx > 2) exit(0);

13. goto loop;

14.

15. t1: printf("loc 1\n"); goto loop_end;
16. t2: printf("loc 2\n"); goto loop_end;
17. t3: printf("loc 3\n"); goto loop_end;
18. }

B Datain Code

The code in Listing B is injectable in multiple locations into source
code to test if a simple “data in code” sequence can confuse the
disassembler. Listing B explains the code, giving the instructions
that are executed at runtime. Listing B shows that objdump and angr
does not disassemble the incl, nop, and decl instructions.

Listing 2: Example of data in code causing desynchronization

1 jmp Label+4

2 Label:

3 .byte 0xe8, 0Oxc5, Oxfe, 0xff, 0xff
4. .byte 0x45 .byte 0x08

5 nop

6 .byte 0xff, 0x4d, 0x08

Listing 3: Executed instructions

1 jmp Label+4

2 Label:

3 .byte 0xe8, Oxc5, Oxfe, 0xff -- not executed
4. incl 0x8(%rbp)

5 nop

6 decl 0x8(%rbp)

Listing 4: objdump and angr disassembly result
1193 <Label >:

1193: e8 c5 fe ff ff callq 105d
1198: 45 08 90 ff 4d 08 90 or %r10b,-0x6ff7b201(%r8)
119f: 5d pop %rbp

11a0: c3 retq

https://ftp.gnu.org/gnu/binutils/binutils-2.34.tar.xz
https://ftp.gnu.org/gnu/binutils/binutils-2.34.tar.xz
https://ghidra-sre.org/
https://github.com/angr/angr/releases/tag/v9.2.79
https://github.com/radareorg/radare2/tree/ea7f0356519884715cf1d5fba16042bac72b2df5
https://github.com/radareorg/radare2/tree/ea7f0356519884715cf1d5fba16042bac72b2df5
https://hex-rays.com/ida-pro/
https://binary.ninja/
http://www.seclab.cs.sunysb.edu/seclab/psi
http://www.seclab.cs.sunysb.edu/seclab/psi
https://www.spec.org/cpu2017/press/release.html
https://www.spec.org/cpu2017/press/release.html
https://www.spec.org/cpu2006/press/release.html
https://www.spec.org/cpu2006/press/release.html
https://www.win-rar.com/rar-linux-mac.html
https://www.win-rar.com/rar-linux-mac.html
https://tigress.wtf/index.html
https://tigress.wtf/index.html
https://github.com/lifting-bits/mcsema
https://doi.org/10.1145/2248487.2150992
http://lttng.org/files/papers/desnoyers-ols2006.pdf
http://lttng.org/files/papers/desnoyers-ols2006.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-109-124.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-109-124.pdf

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

C Examples showing Non-dominance of
Recursive Descent Disassemblers

We give examples to show that no recursive disassembler evaluated
strictly dominates the others in terms of accuracy of disassembly.
Examples of various disassembly errors are also given.

Listing C show instructions from h264 2006 compiled with gcc
-00. We found angr misses instructions from address 0xac1b5 -
0xac1bf but these not missed by ida, radare2, and ghidra.

Listing 5: angr missed instructions

aclb5: jmp aclca
-0x14(%rbp),%eax
%eax ,%edx
$0x1f,%edx

%edx ,%eax

aclb7: mov
aclba: mov
aclbc: shr
aclbf: add

Listing C gives instructions from gobmk 2006 compiled with
gcc -00. radare2 misses instructions from address 0x100275 -
0x1002db, but these are not missed by ida, ghidra, and angr.

Listing 6: Radare2 missed instructions

10026f: add %rdx ,%rax

100272: notrack jmpq «%rax
100275: mov -0x66¢(%rbp),%eax
1002ce: lea
1002d5: mov
1002d8: cmp
1002db: jle

0x516d33(%rip),%rdx
(%rax,%rdx ,1),%eax
$0x1,%eax

100424

D Turning a Disassembly Error into a Trojan
Binary with PoC vulnerabilities

We present two proof-of-concept (PoC) examples turning a disas-
sembly error into trojaned version of the binary where the disas-
sembler misses an inserted vulnerability.

D.1 Trojanized cpugcc

We found disassembly errors in SPEC 2017 cpugcc compiled with
gcc -03 when disassembled with radare2 and ghidra. From an
error found by TraceBin, cpugcc executes the instruction at address
0x380090. However, this address is not disassembled by radare2
and ghidra possibly because it is a target of an indirect jump. The
instructions disassembled by radare2 and ghidra follow:

Listing 7: radare and ghidra disassembly for cpugcc

38008a: 41 5S¢ pop %r12
38008c: c3 retq
38008d: (not disassembled)

We also intentionally create desynchronization to confuse lin-
ear sweep disassembler (angr and objdump). This done by patching
several bytes (e8 1f 00 of @b) starting at address 0x3008d. This
modification changes the bytes at address 0x380090 to an ud?2 in-
struction (0f 0b). The desynchronization issue in objdump and angr
can be seen in Listing D.1, which misses address 0x30090, i.e., ud2
instruction does not appear in the disassembly.

Listing 8: objdump and angr instructions for patched cpugcc

38008a: 41 5c¢ pop %r12
38008c: c3 retq
38008d: e8 1f 00 0f Ob callg b4700b1

Wijayadi et al.

380092: 2a 3e sub
380094: 79 00 jns

(%rsi),%bh
380096

The unique instruction trace capture with TraceBin shown below
in Listing D.1 shows the execution of the ud2 followed by the
execution of an exception handler.

Listing 9: Trace result from TraceBin

0x380040 ,add rax,rdx

0x380043 ,jmp rax

0x380090 ,ud2 // exception instruction not found in
// objdump, angr, radare2, ghidra

0x85a7a0 ,endbr64 // signal handler

0x85a7a4 ,push rbp

D.2 Trojanized xalancbmk

radare2 has a disassembly error around address 0x4ae3ec on Xalan
2006 when compiled using clang -00. We identified that the missed
instruction is in function expandRegistryToFullSchemaSet in file
DataTypeValidatorFactory.cpp. Injecting code into this func-
tion is undetected by radare2 as shown below.

We create a variant of Xalan modifying the source code. The “tro-
janed” version creates a vulnerable version of the code seeded with
two PoC vulnerabilities where the vulnerabilities are not seen in the
disassembly: (i) we add a new global variable global_var1234,
initialized to 0. The PoC is to corrupt to verb+global_var1234+
0x434343 at line 641; and (ii) we create a new function bad() and
the PoC vulnerability is to call bad(). The modified source code is
in Listing D.2.

Listing 10: Xalan injected code at 641 & 642

636: createDatatypeValidator (
SchemaSymbols : : fgDT_LANGUAGE,
637: getDatatypeValidator (SchemaSymbols::fgDT TOKEN),
638: facets, 0, false, 0, false);
639: // disassembled to line 640
640: facets = new RefHashTableOf<KVStringPair >(3);
641: global _var1234 0x434343;
// inserted vulnerability
642: bad(); // inserted vulnerability
643: facets ->put ((void«)
SchemaSymbols :: fgELT_FRACTIONDIGITS ,
new KVStringPair (
SchemaSymbols :: fgELT_FRACTIONDIGITS ,
fgValueZero));

radare2 only manages to partially disassemble line 640. List-
ing D.2 shows the disassembly of the binary compiled from the
modified Xalan. radare2 does not disassemble the instructions la-
belled with an asterisk. The asterisked lines do not appear in the
disassembly, but are shown below for the purposes of explanation.
The initial error in the disassembly leads to more errors introduced
in the PoC. Specifically, the PoC modifies variable global_var1234
and makes a call to bad () but both cannot be seen in the radare2
disassembly.

Listing 11: Assembly code of modified Xalan

4ae3f6: e8 e5 1b 00 00 callq 4affe0
4ae3fb: e9 00 00 00 00 jmpq 42e400
42e400: bf 30 00 00 00 mov $0x30,% edi
4ae405: e8 c6 2c 12 00 callq 5d10do

4aed40a: 48 89 85 28 fd ff ff mov %rax,-0x2d8(%rbp)

Evaluating Disassembly Errors With Only Binaries

4aed411: e9 00 00 00 00 jmpq 4aed16
........ (this code below is not disassembled by radare)
«4ae441: 48 8b 85 20 fd ff ff mov -0x2e0(%rbp),%rax

+4ae448: 48 89 45 c8 mov %rax ,-0x38(%rbp)
«4aeddc: c¢7 05 02 e7 5a 00 43 movl $0x434343 ,0x5ae702(%rip)
«4aed453: 43 43 00

+4ae456: e8 15 ed ff ff callq xercesc::bad

«4ae45b: €9 00 00 00 00 jmpq 4aed60

4affe: 48 8d 7d d8 lea -0x28(%rbp),% rdi

4affa2: e8 29 9a 04 00 callq 4f99do

4affa7: e9 13 00 00 00 jmpq 4affbf

E Control flow instruction error

We give some examples of control flow errors classified into direc-
t/indirect and conditional/unconditional.

E.1 Direct

We found that an instruction called by a direct control transfer
instruction can be missed. The example here shows that ida can
also miss the instruction that is called through direct call. This
example is in Xalan 2017 compiled with gcc -00. ida does not
disassemble instruction at address 0xe538d, which is directly called
from address Oxe53e7. Listing E.1 showing the direct call instruction
at address 0xe53e7, which ida disassembled, and instructions at
address 0xe538d which did not disassembled.

Listing 12: ida missed
e538d: (not disassembled)
e53e7: call e538d (disassembled)

E.2 Conditional Branch

We found that the target and fall-through of a conditional branch in-
struction can be missed by the disassembler. The example below was
disassembled by angr for omnetp 2017 compiled with gcc -03 LTO
and stripped. Listing E.2 below shows the ground truth disassembly
and Listing E.2 the angr disassembly. angr chooses to skip address
0x183162 and starts disassembling at address 0x183170. We remark
that due to branch at 0x183160, a recursive descent disassembler
may not choose to consider bytes from 0x183162 to be in the code
depending on the analysis of the rest of the code.

Listing 13: Ground truth for omnetp

183160: 7f 26 ig 183188

183162: 48 8d 05 3b 60 03 00 lea 0x3603b(%rip),%rax
183169: 85 f6 test %esi,%esi

18316b: 74 2e je 18319b

18316d: 83 fe 01 cmp $0x1,% esi

183170: ba 00 00 00 00 mov $0x0,%edx

Listing 14: Angr result for omnetp

183160: 7f 26 jg 183188
183165: 3b 60 03 cmpl $3(%rax), %esp
183170: ba 00 00 00 00 mov $0x0 ,%edx

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

E.3 Return

When disassembling cactusADM 2006 compiled with clang -03
LTO with ghidra, it was observed that the target for the return
instruction was not disassembled, shown below in Listing E.3.

Listing 15: cactusADM incorrect disassembly

42ald4e: 31 cO Xor eax, eax
42a150: e8 0b 1d 00 00 callq CCTK_VWarn
42a155: (not disassembled)

ghidra assumes after its analysis that function CCTK_VWarn() does
not return, i.e., it behaves as if the attribute _attribute__ ((noreturn))
is specified on that function. Hence, instructions after the call in-
struction are not disassembled. However, TraceBin confirms that
the instruction at address 0x42a155 is executed.

E.4 Indirect

Recursive descent disassemblers have heuristics to guess the possi-
ble targets of indirect control flow. As the heuristics are not guar-
anteed correct, we can expect errors to occur during static analysis.
For instance, ghidra failed to identify some instances of indirect
control flow in the xz 2017 program compiled with gcc LTO. List-
ing E.4 below gives an example. The instruction at address 0xca9c
is an indirect jump. Our control flow explanation showed that there
were several target addresses, such as {0xcaa0, 0xcdc0, Oxce90} but
ghidra failed to disassemble any of these basic blocks.

Listing 16: XZ indirect jump
ca8e: 48 8d 1d 9f 19 01 00 lea 0x1199f(%rip),%rbx
ca95: 48 63 0Oc 8b movslq (%rbx,%rcx ,4),%rcx
ca99: 48 01 d9 add %rbx ,%rcx
ca9c: 3e ff el jmpq «%rcx
Apart from that, most of the errors caused by indirect control
flow in angr happen in the PLT section, as shown in Listing 5.

F Wrongly Disassembled Instructions

Missing instructions can cause disassemblers to produce incorrect
disassembly. An example of this is observed when angr disassembles
perlbench 2006 compiled with gcc -03. The disassembly misses
the fallthrough of a conditional branch, which subsequently leads
to the incorrect disassembly of the following instruction. Listing F
shows the correct disassembly, and Listing F shows the disassembly
result yielded by angr.

Listing 17: Ground truth for perlbench

a20a0: Of 84 1la 09 00 00 je a29c0

a20a6: 41 8b 56 68 movl 0x68(%rl14), %edx
a20aa: 85 d2 testl %edx, %edx
a20ac: Of 84 de 06 00 00 je a2790

a20b2: 41 f7 06 00 40 00 00 testl $0x4000, (%rl4)

Listing 18: Angr result for perlbench

a20a0: Of 84 1la 09 00 00 je 0x4a29c0
a20a8: 56 pushq %rsi

a20a9: 68 85 d2 of 84 pushq $0x840fd285
a20ae: de 06 fiadds (%rsi)
a20b0: 00 00 addb %al, (%rax)

	Abstract
	1 Introduction
	2 Background
	2.1 Binary Disassembly
	2.2 Accuracy of Disassembly

	3 Design
	4 Implementation
	5 Evaluation
	6 Conclusion
	Acknowledgments
	References
	A Jump Tables
	B Data in Code
	C Examples showing Non-dominance of Recursive Descent Disassemblers
	D Turning a Disassembly Error into a Trojan Binary with PoC vulnerabilities
	D.1 Trojanized cpugcc
	D.2 Trojanized xalancbmk

	E Control flow instruction error
	E.1 Direct
	E.2 Conditional Branch
	E.3 Return
	E.4 Indirect

	F Wrongly Disassembled Instructions

