
FlowMatrix: GPU-Assisted Information-Flow
Analysis through Matrix-Based Representation

Kaihang Ji, Jun Zeng, Yuancheng Jiang, Zhenkai Liang,

Zheng Leong Chua, Prateek Saxena, Abhik Roychoudhury

USENIX Security Symposium, August 2022

• DIFT (aka Dynamic Taint Analysis): An important program analysis
technique in security

• Track information flows in a program: Taint state transforms between
sources and sinks of interest

• Security applications: Vulnerability analysis, Configuration diagnosis, etc.

1

Dynamic Information Flow Tracking (DIFT)

/etc/passwd

162.66.239.75

fp = fopen(path, "r");
while(fgets(msg, maxLength-1, fp)) {

strcat(msg, "\n");
send(socket, msg, strlen(msg), 0);

}

Data Leakage Example

Sink

Source

• Challenge: Users often need to check multiple information flows
• Calls for efficient DIFT Query: Rapidly DIFT with different given sources and sinks​

• DIFT is expensive: 4~8 times performance overhead​
• One way to support DIFT query: Heavy computing support (OSDI’16)

• Another way is to speed up DIFT itself…

2

Dynamic Information Flow Tracking (DIFT)

/etc/passwd

162.66.239.75

fp = fopen(path, "r");
while(fgets(msg, maxLength-1, fp)) {

strcat(msg, "\n");
send(socket, msg, strlen(msg), 0);

}

Data Leakage ExampleSource

Sink

/opt/secret

Malicious Input
?

?

Problem of DIFT

• Existing work of accelerating DIFT

Traditional DIFT
Decoupling

Decoupled Analysis
(CCS’13,Security’15)

Program Execution Taint PropagationInstrumentation

• Lack of speeding up propagation operation itself.
3

Normal Execution
Fast Path

Partial Instrumentation
(Micro’06,RAID’19)

Hot Path
Popular Path Summary

(PLDI’10)

Complexity of DIFT Operation Rules

• Taint propagation logics in current DIFT mechanisms are
• Implemented in high-level programming languages with if and loops

• Unnecessarily complex

• Challenging to be computationally speeded-up

4
Different implementations of taint propagation rule of or instruction in Panda, libdft and DECAF.

Insights

DIFT operations for instruction
OR eax, edx

5

eax ebx ecx edx

eax ebx ecx edx

Input State

Output State

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑏𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑐𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑑𝑥𝑖𝑛

Dependencies in Boolean space

Dependencies in a verbose form

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 1 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛

• DIFT propagation logic is data dependency (TaintInduce NDSS’19)

• Example: DIFT operations for x86 instructions

Insights

DIFT operations for instruction
OR eax, edx

5

eax ebx ecx edx

eax ebx ecx edx

Input State

Output State

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑏𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑐𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑑𝑥𝑖𝑛

Dependencies in Boolean space

Dependencies in a verbose form

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 1 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛

• DIFT propagation logic is data dependency (TaintInduce NDSS’19)

• Example: DIFT operations for x86 instructions

• DIFT propagation logic is data dependency (TaintInduce NDSS’19)

• Example: DIFT operations for x86 instructions

Insights

DIFT operations for instruction
OR eax, edx

5

eax ebx ecx edx

eax ebx ecx edx

Input State

Output State

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑏𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑐𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑑𝑥𝑖𝑛

Dependencies in Boolean space

Dependencies in a verbose form

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 1 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛

A system of linear equations:

𝑓: 𝑆𝑖𝑛 → 𝑆𝑜𝑢𝑡

We identify the linearity in DIFT:

• The DIFT operation between input states and output states is a

linear relationship.

DIFT Operations as Matrix Transformations

𝑒𝑎𝑥𝑜𝑢𝑡 = 1 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑏𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 1 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑐𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 1 ∗ 𝑒𝑐𝑥𝑖𝑛 + 0 ∗ 𝑒𝑑𝑥𝑖𝑛
𝑒𝑑𝑥𝑜𝑢𝑡 = 0 ∗ 𝑒𝑎𝑥𝑖𝑛 + 0 ∗ 𝑒𝑏𝑥𝑖𝑛 + 0 ∗ 𝑒𝑐𝑥𝑖𝑛 + 1 ∗ 𝑒𝑑𝑥𝑖𝑛

𝑒𝑎𝑥𝑜𝑢𝑡
𝑒𝑏𝑥𝑜𝑢𝑡
𝑒𝑐𝑥𝑜𝑢𝑡
𝑒𝑑𝑥𝑜𝑢𝑡

=

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

𝑒𝑎𝑥𝑖𝑛
𝑒𝑏𝑥𝑖𝑛
𝑒𝑐𝑥𝑖𝑛
𝑒𝑑𝑥𝑖𝑛

The coefficient matrix, the dependencies between 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡

FlowMatrix: a new matrix-based representation of DIFT propagation rule

6

Propagation Summary as Matrix Multiplication

• Example: DIFT propagation of two x86 instructions
• Summarizing two DIFT propagation rules is to multiply two FlowMatrices:

𝑀𝑠𝑢𝑚 = 𝑀2 ×𝑀1

• FlowMatrix operations: matrix-matrix multiplication, etc.

eax ebx

OR eax,edx

MOV ebx,eax

edx

State 1

State 2

Init State

eax ebx edx

eax ebx edx

𝑒𝑎𝑥𝑜𝑢𝑡
𝑒𝑏𝑥𝑜𝑢𝑡
𝑒𝑑𝑥𝑜𝑢𝑡

=
1 0 0
1 0 0
0 0 1

1 0 1
0 1 0
0 0 1

𝑒𝑎𝑥𝑖𝑛
𝑒𝑏𝑥𝑖𝑛
𝑒𝑑𝑥𝑖𝑛

1 0 1
1 0 1
0 0 1

Summarized Matrix

7

GPU-assisted DIFT Operations

• GPUs are suitable for highly parallel applications such as matrix and
vector computations.

• FlowMatrix operations are accelerated by GPUs!

8

GPU-assisted FlowMatrix-based DIFT Query

• How can GPUs and FlowMatrix support efficient DIFT queries?
• Answer a query by propagating each instruction sequentially?  Query too slow

• Prepare queries by pre-computing every possible query?  Too much to
prepare

• Goal: Reasonable pre-processing cost and rapid query response

9

/etc/passwd

162.66.239.75

fp = fopen(path, "r");
while(fgets(msg, maxLength-1, fp)) {

strcat(msg, "\n");
send(socket, msg, strlen(msg), 0);

}

DIFT Query Motivating Example
Source

/opt/secret

Malicious Input
?

?

?

Sink

Trace-based Repeated DIFT Query

• Offline DIFT query on instruction execution traces

• (Segment-tree-like) Query Tree
• Leaf nodes: FlowMatrix for a single instruction

• Non-leaf nodes: Summarized FlowMatrices of two child nodes

• Pre-processing (Tree Construction): Linear time complexity

• Query: Logarithmic time complexity

10
DIFT Query

Under/Over-tracking in DIFT queries

• Improper tracking policy may lead under/over-tracking
• E.g., Common under-tracking cases: dependencies between pointers and

values, between condition and in-branch variables

• How to mutate tracking policy with FlowMatrix?
• Directly patch DIFT rule matrix

• Add a temporary variable to bridge information flows

11

eax ebx

eax ebx

MOV eax, [ebx]

0 𝟎
0 1

→
0 𝟏
0 1

Rule Patching

eax ZF

eax ZF

JNE <branch1>
branch1:

XOR ebx, ebx
MOV eax, ebx

Temporary Variable Bridging

tmp

0 0
0 0

→
0 0 𝟏
0 0 0
0 0 0

×
0 0 0
0 0 0
0 𝟏 0

Evaluation
• Evaluation Aspects

• Performance
• How much improvement is achieved by GPU assistance?
• How fast is FlowMatrix-based DIFT query?

• Throughput
• What is the throughput of FlowMatrix-based DIFT queries?

• Comparison
• How does FlowMatrix-based DIFT query compare with existing taint

tools and DIFT query systems?

• Date Set
• 15 CVEs and 7 common applications

12

Evaluation - Performance
• Question: How much improvement achieved by GPU assistance?

• Answer:
• Our prototype outperforms CPU-based DIFT tool over 5 times in

performance on average.

0

2

4

6

8

10

Performance Speed-up

13

Evaluation - Performance
• Question: How fast is FlowMatrix-based DIFT query?

• Answer:
• Most DIFT query requests can be answered in less than 0.5 sec.

1

10

100

1000

Query Response Time (millisecond)

14

Evaluation - Throughput
• Question: What is the throughput of the DIFT query operations?

• Answer:
• Over 5,000,000 dataflows per second on average

0
1,000,000
2,000,000
3,000,000
4,000,000
5,000,000
6,000,000
7,000,000
8,000,000
9,000,000

FlowMatrix-based Query Throughput (flow/s)

15

Evaluation - Comparison
• Question: Is FlowMatrix comparable to existing taint engines and DIFT query

systems?
• Answer:

• Three orders of magnitude larger than LibDFT
• Comparable with JetStream (achieved by 128 CPU cores)

1

10

100

1000

10000

100000

Throughput Outperforming Libdft (magnification)

16

Summary

• FlowMatrix: a Matrix-based DIFT Representation
• We recognize linearity of dynamic information flow operations

• We propose a matrix-based representation for DIFT operations

• GPU-assisted DIFT
• FlowMatrix enables GPU as co-processors for efficient DIFT

operations

• DIFT Query
• We design an efficient DIFT query with high throughput

17

Thanks!

Q&A

kaihang@comp.nus.edu.sg

Code Available at https://github.com/mimicji/FlowMatrix

18

