FlowMatrix: GPU-Assisted Information-Flow
Analysis through Matrix-Based Representation

Kaihang Ji, Jun Zeng, Yuancheng Jiang, Zhenkai Liang,
Zheng Leong Chua, Prateek Saxena, Abhik Roychoudhury

USENIX Security Symposium, August 2022

NUS

National University
of Singapore

B8 &

35

Dynamic Information Flow Tracking (DIFT)

* DIFT (aka Dynamic Taint Analysis): An important program analysis
technique in security

* Track information flows in a program: Taint state transforms between
sources and sinks of interest

* Security applications: Vulnerability analysis, Configuration diagnosis, etc.

axLength-1, fp)) { Sink

'); 162.66.239.75

strlen(msg), 0);
@) ET!l [etc/passwd -/ } /

Source Data Leakage Example

Dynamic Information Flow Tracking (DIFT)

* Challenge: Users often need to check multiple information flows
* Calls for efficient DIFT Query: Rapidly DIFT with different given sources and sinks

* DIFT is expensive: 4~8 times performance overhead

* One way to support DIFT query: Heavy computing support (OSDI’16)
* Another way is to speed up DIFT itself...

>

Malicious Input

&

=1 /opt/secret —

axLength-l, fp)) {
'),

strlen(msg), 0);

Sink

162.66.239.75

A

a—
ﬁl /etc/passwd -/

Source

Data Leakage Example

Problem of DIFT

* Existing work of accelerating DIFT

- Program Execution Instrumentation Taint Propagation

\ 4

I -
1
1
1
I -
1
- g

Decoupling Fast Path Hot Path
Normal Execution Traditional DIFT Decoupled Analysis Partial Instrumentation Popular Path Summary
(CCS’13,Security’15) (Micro’06,RAID’19) (PLDI'10)

* Lack of speeding up propagation operation itself.

Complexity of DIFT Operation Rules

* Taint propagation logics in current DIFT mechanisms are
* Implemented in high-level programming languages with if and loops
* Unnecessarily complex
* Challenging to be computationally speeded-up

void taint_parallel_compute(shad, wveoid r2r_binary_opl(dst, src, ...) int gen_taintcheck_imsn(...) {
dest, opcode, ...) { switch (ope) {
{ thread_ctx ->vepu.gpr(dst] |= case INDEX op_or_i32:
if (opcode == llvm::Instruction:: thread_ctx->vcpu.gprlsrc]; /+ t0 = argl || argl =/
Or) { 1 teg_gen_or_1i32 (t0,argl,argl);
cbh_mask_out.cbhb_mask = void ins_inspect (INS ims) { S £2 = (£t0 1= 0) w
{cbh_mask_1.=zero_mask & - tcg_gen_movi_i32(t_zero ,0);
cb_mask_2.cb_mask) | gwitch (ins_imndx) { tcg_gen_setcond_ 132 (TCG_COND_NE
(cb_mask_2.zero_mask & case XED_ICLASS_OR: ,t2,t_zaro,tl);
ch_mask_1.cb_mask); INS _InsertCall(f* result = ~t2Z * f
T r2r_binary_opl, tcg_gen_neg_ 132 (result ,t2);
write_cb_masks (shad, dest, REG32_INDX (reg_dst), break;
cb_mask_out, ...J; REG32_INDX (reg_src), ...);
- } }
1 1 i
(a) Panda (b) Libdft (c) Decal

Different implementations of taint propagation rule of or instruction in Panda, libdft and DECAF.

Insights

* DIFT propagation logic is data dependency (TaintiInduce NDSS’19)
* Example: DIFT operations for x86 instructions
eax,,; = 1 *eax;, +1*edx;,

{@ J Input State
ebx,ye = 1% ebxy
{]Output State :cifczzz z 1 : Zi);i;

DIFT operations for instruction Dependencies in Boolean space
OR eax, edx

eax,y = 1 xeax;, + 0 xebx;,, + 0 x ecx;,, + 1 x edx;y,
ebxyyur = 0 *eax;, + 1 *ebx;, + 0 *ecx;, + 0 * edx;,
ecxpyr = 0 x eax;, + 0 * ebx;, + 1 * ecx;, + 0 * edx;,
edx,yr = 0 * eaxj, + 0 * ebx;, + 0 x ecx;, + 1 * edx;,

Dependencies in a verbose form

Insights

[eax, s = 1 xeax;, + 0 *ebx;,, + 0 *ecx;, + 1 * edxin]

Insights

We identify the linearity in DIFT:

* The DIFT operation between input states and output states is a

linear relationship.

4 . .
A system of linear equations:
L fi:Sin = Sout
4 —)
eaxyyr = 1 *x eaxj, + 0 *ebx;, + 0 x ecx;, + 1 * edx;,
ebxyyr = 0 x eax;, + 1% ebxy, + 0 x ecxy, + 0 x edx;y,
ecxoyr = 0 xeax;, + 0 xebx;, + 1 x ecx;,, + 0 x edx;y,
\edXxoyr = 0% eaxy, + 0 * ebx;, + 0 x ecx;y, + 1+ edx;p

DIFT Operations as Matrix Transformations

FlowMatrix: a new matrix-based representation of DIFT propagation rule

(eaxout =1*eax;, +0*ebx;,, +0*ecx;,, +1* edxi,?

ebx,,: = 0*eax;, +1*ebx;, +0*ecx;, + 0 xedx;,
ecxyy = 0 * eax;, + 0 * ebx;, + 1 % ecx;, + 0 * edx;,
\EAXour = 0 * eax;, + 0 * ebxyy + 0 x ecx;y + 1 * edx;y

'

4 eAX oyt r_l 0 0 1] eaXin h
ebxoue | |10 1 0 Of] €b%in
eCXout 0 0 1 O} eXin

\ edxout 0 0 0 1] edxin y

The coefficient matrix, the dependencies between §;,, and S, ;¢

Propagation Summary as Matrix Multiplication

 Example: DIFT propagation of two x86 instructions
 Summarizing two DIFT propagation rules is to multiply two FlowMatrices:
Msym = M X My

* FlowMatrix operations: matrix-matrix multiplication, etc.

-

_

OR eax,edx

~N

Gee

J

K‘C

MOV ebx,eax E

[666]

~

Init State

State 1

State 2

/

(

eadXout 1 171)/€4%Xin
ebxout> = [1 ‘ [‘ ebxm>
edXyyt edx;,

1l1
[1 1

Summarized Matrix

GPU-assisted DIFT Operations

* GPUs are suitable for highly parallel applications such as matrix and
vector computations.

* FlowMatrix operations are accelerated by GPUs!

Speed of calculation (FLOPS) and data movement (GB/s) - #EmeringTech #MegaTrend

Peak-Double-PrecisionFlops{GFLOPs) Peak Memory Bandwidth (GB/s)
6000 800
5000 <o 700 R
“CPU
600 <+CPU
4000 500
3000 400
2000 300
200
1000
100
o)/._’——‘. "‘__‘H'/’-_‘
0 = 0
2006 2008 2010 2012 2014 2016 2018 2006 2008 2010 2012 2014 2016 2018

Source: HPC 2016.

source europa.eu via @mikequindazzi

GPU-assisted FlowMatrix-based DIFT Query

* How can GPUs and FlowMatrix support efficient DIFT queries?
* Answer a query by propagating each instruction sequentially? ® Query too slow

* Prepare queries by pre-computing every possible query? ® Too much to
prepare

* Goal: Reasonable pre-processing cost and rapid query response

9 _ n_imy\,
>~ || malicious Input —= t — ra))’(Length 1, fp)) {

whi ;ge-t-s(?j
-— ny,
=1 /opt/secret /strcat(m 7 \N); 162.66.239.75

9
o send(socket, msg, strlen(msg), 0);
%/ etc/passwd —} ~— /

Sink
Source DIFT Query Motivating Example

Trace-based Repeated DIFT Query

e Offline DIFT query on instruction execution traces

* (Segment-tree-like) Query Tree
* Leaf nodes: FlowMatrix for a single instruction
* Non-leaf nodes: Summarized FlowMatrices of two child nodes

* Pre-processing (Tree Construction): Linear time complexity
* Query: Logarithmic time complexity

Y
DIFT Query

10

Under/Over-tracking in DIFT queries

* Improper tracking policy may lead under/over-tracking
* E.g., Common under-tracking cases: dependencies between pointers and
values, between condition and in-branch variables
* How to mutate tracking policy with FlowMatrix?
* Directly patch DIFT rule matrix
* Add a temporary variable to bridge information flows
JNE <branch1> @

|
{ br)c(lg;h:l;x, ebx -
@ MOV eax, ebx \ @)

J

4 -
0 0 1 0O 0 O
(R 5 0-[o o[o 1
\ 0 0 O 0O 1 0
Rule Patching Temporary Variable Bridging

()

()
. J
4)

MOV eax, [ebx]

11

Evaluation

e Evaluation Aspects

* Performance
* How much improvement is achieved by GPU assistance?
 How fast is FlowMatrix-based DIFT query?
* Throughput
 Whatis the throughput of FlowMatrix-based DIFT queries?
* Comparison
* How does FlowMatrix-based DIFT query compare with existing taint
tools and DIFT query systems?
* Date Set
15 CVEs and 7 common applications

12

Evaluation - Performance

* Question: How much improvement achieved by GPU assistance?

* Answer:
e QOur prototype outperforms CPU-based DIFT tool over 5 times in
performance on average.

Performance Speed-up
10

O N B O O

%

Y
—

%
—
I
—
I
—

©
—

c N
% I
%

13

Evaluation - Performance

* (Question: How fast is FlowMatrix-based DIFT query?

* Answer:
 Most DIFT query requests can be answered in less than 0.5 sec.

Query Response Time (millisecond)
1000

100
10 l I
1
N >

14

Evaluation - Throughput

* Question: What is the throughput of the DIFT query operations?

* Answer:
e QOver 5,000,000 dataflows per second on average

FlowMatrix-based Query Throughput (flow/s)

9,000,000
8,000,000
7,000,000
6,000,000
5,000,000
4,000,000
3,000,000
2,000,000
1,000,000
0

%‘53& g.&e @65\ 8&@ ~o(@\\ fz}\@ CJ\«’Q/ &‘»Qb . %O\A fo“c’g & K\°$ %

c,)Q Qg’ %Q & 0& N \§Q Q/Q ‘0\6 < Qb‘

,\‘(\0 < <& @) QB

Evaluation - Comparison

* Question: Is FlowMatrix comparable to existing taint engines and DIFT query
systems?
* Answer:
 Three orders of magnitude larger than LibDFT
e Comparable with JetStream (achieved by 128 CPU cores)

Throughput Outperforming Libdft (magnification)

100000
10000

1000
100
o HERERE
1
N ~ SEE
&

16

Summary

* FlowMatrix: a Matrix-based DIFT Representation
* We recognize linearity of dynamic information flow operations
* We propose a matrix-based representation for DIFT operations

e GPU-assisted DIFT

* FlowMatrix enables GPU as co-processors for efficient DIFT
operations

* DIFT Query
* We design an efficient DIFT query with high throughput

Thanks!
Q&A

kaihang@comp.nus.edu.sg

Code Available at https://github.com/mimicji/FlowMatrix

18

