
Fuzzing the PHP Interpreter via Dataflow Fusion
A novel fuzzing framework for detecting memory errors in the PHP interpreter

Yuancheng Jiang, Chuqi Zhang, Bonan Ruan, Jiahao Liu, Manuel Rigger, Roland Yap, Zhenkai Liang

School of Computing, National University of Singapore

>200 Verified Bugs PHP Official Toolchain

The PHP Security Challenge

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

PHP's Dominance in Web Development

● Cornerstone of the modern web, powering over 70% of websites globally

● Used for personal blogs to major e-commerce platforms

● Extensive C codebase (over a million lines) presents a significant attack surface

Overlooked Security Risks

● Existing PHP researches: application-level security (e.g., SQL Injection)

● Memory corruption bugs in C most common cause of critical vulnerabilities

Research Question: how to improve the low-level security of PHP ecosystem?

1

CVE-2023-3824
In PHP version 8.0.* when loading phar file, while reading PHAR
directory entries, insufficient length checking may lead to a stack
buffer overflow, leading potentially to memory corruption or RCE.

CVE-2024-8929
In PHP versions 8.1.* a hostile MySQL server can cause the client to
disclose the content of its heap from other SQL requests and
possible other data belonging to different users of the same server.

Fuzzing

Fuzzing: well-known effective approach to discover bugs

● Generating a diversity of inputs

● Driving software into unexpected states

Challenge: how to automatically generate diverse inputs?
● Mutation-based Input Generation

● Starts from a corpus of existing inputs (seeds) and produces variants by applying random or

heuristically guided mutations to those seeds.

● Grammar-based Input Generation

● Uses a formal grammar (e.g., a BNF or ANTLR definition) of the input language to

generate syntactically valid inputs from scratch.

2Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Input

Program Input Generation

Mutation- and Grammar-based Fuzzing

Corpus Mutation

Mutation-based Fuzzing

InputGrammar

Grammar-based Fuzzing

Common Weakness in Generation Programs
● Limited semantic diversity (although having high syntax correctness)

● Hard to reach deep logics when fuzzing compilers (e.g., clang) or interpreters (e.g., PHP)

Research Question: how to generate inputs with diverse code semantics?
● Mutation-based fuzzing alters one input at one time

3

Can we take two or more inputs at one time and do further transformations?

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Input Fusion

What could be effective way to merge inputs with diverse semantics?
● Seed concatenation? It makes no big difference from executing them separately

Recall Seed Selection
● Known Proof of Concepts from bug reports, unit tests, etc.

● Minimized code snippet to test one single feature or bug reproduction

4

Input

Fusion-based Fuzzing

Corpus FusionSeed X Seed Y

Seeds are typically unit-level program snippets designed to test a single functionality or
regression in the codebase. They generally (e.g., 96.1% in PHP) execute sequentially (i.e.,
without branches). This implies that control flow has minimal impact on their code semantics.

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Data Flow as a Representation

Data Flow
● Definition: how values move from their points of definition to their points of use

<?php
 /* Test Case A */
 $values = array("Hello World", "\n\t1\r\n");
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

$str

$end

$values

data flow of PHP program

5

● Data flow can well represent code semantics of seeds due to the simple control flow

● Seed fusion becomes data flow fusion

Seed Fusion to Data Flow Fusion

Fusion
Data

Flow XSeed X Seed Y
Data

Flow Y

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Data Flow Fusion

Data Flow Fusion

<?php
 /* Test Case A */
 $values = array("Hello World", "\n\t1\r\n");
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

● Randomly interleaving data flows among two or more seed programs

$str

$end

$values

Test Case A: base64 encoding

<?php
 /* Test Case B */
 $dom = new DOMDocument;
 $dom->loadXML('<tag>value</tag>');
 $ref = $dom->documentElement->firstChild;
 $nodes = $ref->childNodes;

$ref

$nodes

Test Case B: DOM operations

$dom

6Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Dataflow fusion option 1

Data Flow Fusion

Data Flow Fusion

<?php
 /* Test Case A */
 $values = array("Hello World", "\n\t1\r\n");
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

● Randomly interleaving data flows among two or more seed programs

$str

$end

$values

Test Case A: base64 encoding

<?php
 /* Test Case B */
 $dom = new DOMDocument;
 $dom->loadXML('<tag>value</tag>');
 $ref = $dom->documentElement->firstChild;
 $nodes = $ref->childNodes;

$ref

$nodes

Test Case B: DOM operations

$dom

<?php
 /* Fused Test 01 */
 $values = array(..);
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

 $fusion = $enc;

 $dom = new DOMDocument;
 $dom ->loadXML ('<tag>value</tag>’);
 $ref = $fusion-> documentElement->..;
 $nodes = $ref->childNodes;

Observation:
 See? Now we have a new test case to fuzz
the DOM operation on base64 object!

7Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Data Flow Fusion

Data Flow Fusion

<?php
 /* Test Case A */
 $values = array("Hello World", "\n\t1\r\n");
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

● Randomly interleaving data flows among two or more seed programs

$str

$end

$values

Test Case A: base64 encoding

<?php
 /* Test Case B */
 $dom = new DOMDocument;
 $dom->loadXML('<tag>value</tag>');
 $ref = $dom->documentElement->firstChild;
 $nodes = $ref->childNodes;

$ref

$nodes

Test Case B: DOM operations

$dom

<?php
 /* Fused Test 02 */
 $values = array(..);
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

 $fusion = $str;

 $dom = new DOMDocument;
 $dom ->loadXML ('<tag>value</tag>’);
 $ref = $dom-> documentElement->..;
 $nodes = $fusion->childNodes;

Observation:
 Random data flow combinations can
create variant code semantics.

8

Dataflow fusion option 2

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Data Flow Fusion

Data Flow Fusion

<?php
 /* Test Case A */
 $values = array("Hello World", "\n\t1\r\n");
 foreach($values as $str) {
 $enc = base64_encode($str);
 }

● Randomly interleaving data flows among two or more seed programs

$str

$end

$values

Test Case A: base64 encoding

<?php
 /* Test Case B */
 $dom = new DOMDocument;
 $dom->loadXML('<tag>value</tag>');
 $ref = $dom->documentElement->firstChild;
 $nodes = $ref->childNodes;

$ref

$nodes

Test Case B: DOM operations

$dom

<?php
 /* Fused Input 03 */
 $dom = new DOMDocument;
 $dom->loadXML('<tag>value</tag>');
 $ref = $dom->documentElement->firstChild;
 $nodes = $ref->childNodes;

 $fusion = $nodes;

 $values = array(..);
 foreach($fusion as $str) {
 $enc = base64_encode($str);
 }
 // AddressSanitizer: heap-use-after-free

9

This data flow fusion triggers
a 20-year-old memory error
existed in PHP interpreter!

Boom!

Dataflow fusion option 3

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Input

FlowFusion Overview

Workflow

Corpus FusionSeed X Seed Y.phpt Fuzzing

● FlowFusion collects phpt files as corpus, and execute inputs in PHP engines for fuzzing

Recursive Fusion
● Fused inputs can be added back to corpus if they have new coverage or find new bugs

● Recursive fusion enables more complex semantic fusion among >2 seed programs

Fuzzing Setup
● Continuously fuzzing the nightly build of PHP interpreters for six months

● Oracles: address sanitizer and undefined behavior sanitizers; crashes; assertion failures

10Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Complementary Strategies

Test Mutation
● Before fusion, FlowFusion applies mutations to original test cases

● Introduces semantic variations while maintaining syntactic validity

● Examples: operators exchange (‘+’ to ‘%’), special values (‘1’ to ‘int_max’)

Interface Fuzzing
● After generating fused test cases, FlowFusion injects random calls to internal functions

● Uses variables from the fused context as arguments for these functions

● Effectively tests the robustness of PHP's API under novel and unexpected conditions

Environment Crossover
● Merges configurations (required modules, .ini settings) of seeds

● Randomly introduces other valid configurations collected from the entire test suite

● Examples of altered settings: memory limits, JIT settings, Opcache modes

11Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Bug Results

Bug Status Breakdown
● Among 158 bugs, 125 are fixed, 11 confirmed, 18 pending, 4 expected

Key Findings (from paper)
● FlowFusion detected 158 unique and unknown bugs

● Our bug reports led to security improvements across 80+ source files

● Developers introduce patches that modified 5,000+ lines of code

12

Discovered CWE Types

● FlowFusion covers bugs spanned 10 different CWE categories

● Examples: CWE-121 Stack-based Buffer Overflow, CWE-122 Heap-based Buffer Overflow,

CWE124 Buffer Underwrite,, CWE-416 Use After Free, etc.

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

More Effectiveness

Comparison to existing works
● Baselines:

o PHP test suite: maintained by PHP developers for CI/CD testing
o AFL++: a well-known fuzzer that adds advanced instrumentation, persistent fuzzing,

and customizable feedback for faster vulnerability discovery
o PolyGlot (S&P’21): a multi-language fuzzer that translates inputs into a uniform IR,

applies constrained, semantics-preserving mutations with semantic validation

● Settings: code coverage (collected via gcovr) after 24 hours fuzzing

13

Table 1

AFL++ Polyglot FlowFusion

2 53.3% 57.7% 79.9%
4 57.6% 57.7% 80.6%
6 58.0% 57.7% 80.8%
8 58.3% 57.7% 81.0%
10 58.4% 57.8% 81.1%
12 58.6% 57.8% 81.2%
14 58.8% 57.9% 81.3%
16 59.0% 57.9% 81.3%
18 59.2% 58.0% 81.4%
20 59.2% 58.0% 81.4%
22 59.3% 58.0% 81.5%
24 59.4% 58.0% 81.5%

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20 22 24

81.5%81.5%81.4%81.4%81.3%81.3%81.2%81.1%81.0%80.8%80.6%79.9%

58.0%58.0%58.0%58.0%57.9%57.9%57.8%57.8%57.7%57.7%57.7%57.7%

59.4%59.3%59.2%59.2%59.0%58.8%58.6%58.4%58.3%58.0%57.6%53.3%

AFL++ Polyglot FlowFusionOfficial Testcases (78.0%)

0%

100%

C
od

e
C

ov
er

ag
e

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

Continued Impacts

Living Project Community Integration
FlowFusion seamlessly incorporates nightly
builds in PHP source code to testing new features
and patches. FlowFusion gets auto-updates when
new test cases are added to official test suite.

FlowFusion becomes an official toolchain (i.e.,
available at https://github.com/php/flowfusion)
for its outstanding bug discover effectiveness to
help developers improve PHP interpreter security.

14

FlowFusion’s impact is not bound by paper submission or acceptance; it focuses on sustained community
support. FlowFusion continuously detects new PHP memory errors nearly every week.

FlowFusion’s Monthly Bug Report Count

Paper submission
Official toolchain

Paper acceptance

We reported >200 bug issues after submission

Fuzzing the PHP Interpreter via Dataflow Fusion, USENIX Security 2025

https://github.com/php/flowfusion

Summary

Input

Fusion-based Fuzzing

Corpus

(Data Flow As a Representation)

FusionSeed X Seed Y

Future work
● More oracles to detect other bug categories (e.g., logic bugs) that FlowFusion missed

● Adaptation to other programming language implementations (e.g., cPython, v8)

● Combination with large language models

Availability
● Source code: https://github.com/php/flowfusion

● Bug reports: https://github.com/php/php-src/issues?q=author%3AYuanchengJiang

https://github.com/php/flowfusion
https://github.com/php/php-src/issues?q=author%3AYuanchengJiang

