
Fuzzing the PHP Interpreter via Dataflow Fusion

Yuancheng Jiang, Chuqi Zhang, Bonan Ruan, Jiahao Liu, Manuel Rigger, Roland H. C. Yap, and Zhenkai Liang

School of Computing, National University of Singapore

{yuancheng, chuqiz, r-bonan, jiahao99, rigger, ryap, liangzk}@comp.nus.edu.sg

Abstract
PHP, a dominant scripting language in web development,

powers a vast range of websites, from personal blogs to major
platforms. While existing research primarily focuses on PHP
application-level security issues like code injection, mem-
ory errors within the PHP interpreter have been largely over-
looked. These memory errors, prevalent due to the PHP in-
terpreter’s extensive C codebase, pose significant risks to
the confidentiality, integrity, and availability of PHP servers.
This paper introduces FlowFusion, the first automatic fuzzing
framework to detect memory errors in the PHP interpreter.
FlowFusion leverages dataflow as an efficient representation
of test cases maintained by PHP developers, merging two or
more test cases to produce fused test cases with more com-
plex code semantics. Moreover, FlowFusion employs strate-
gies such as test mutation, interface fuzzing, and environment
crossover to increase bug finding. In our evaluation, FlowFu-
sion found 158 unknown bugs in the PHP interpreter, with
125 fixed and 11 confirmed. Comparing FlowFusion against
the official test suite and a naive test concatenation approach,
FlowFusion can detect new bugs that these methods miss,
while also achieving greater code coverage. FlowFusion also
outperformed state-of-the-art fuzzers AFL++ and Polyglot,
covering 24% more lines of code after 24 hours of fuzzing.
FlowFusion has gained wide recognition among PHP devel-
opers and is now integrated into the official PHP toolchain.

1 Introduction

PHP is a scripting programming language that is tailored for
web development. Known for its flexibility and practicality,
PHP powers a vast number of websites, ranging from personal
blogs to global platforms. According to various reports [14,
23, 24, 52], PHP is used by over 70% of websites worldwide,
making it one of the most popular programming languages
for web deployment.

Although several PHP implementations are available, the
official PHP interpreter is the most widely used. Its codebase,

mainly in C, exceeds one million lines. As C is a low-level
language without memory safety, the PHP interpreter is poten-
tially vulnerable to memory errors that attackers may exploit.

Identifying memory errors in the PHP interpreter is chal-
lenging. Existing research mainly focuses on script security
issues, such as application bugs, including SQL injection and
file inclusion. Limited effort has been dedicated to detect-
ing memory errors in the underlying PHP interpreter. To
the best of our knowledge, no existing approach is specifi-
cally tailored for fuzzing the PHP interpreter. Some fuzzing
approaches [2, 8, 18, 48] rely on grammar-guided program
generation and have found memory errors in the PHP inter-
preter. Nevertheless, they may not be sufficiently effective in
finding such bugs because grammar generation focuses more
on ensuring syntactic correctness than code semantics. As a
result, it struggles to create programs with complex seman-
tic behavior and is unlikely to produce test cases targeting
specific modules of the PHP interpreter.

Previous wisdom in fuzzing research has proven its prac-
ticality in uncovering memory errors [5, 17]. In terms of the
PHP interpreter, the PHP community is maintaining a high-
quality test suite consisting of over 19K test cases. Such test
cases cover broad PHP features over 80 modules, such as
in-memory databases or sessions, coming with plug-and-play
running environments and configurations.
Observation 1: The test cases from PHP’s official test suite
yield higher code coverage than existing fuzzing approaches,
thereby naturally forming a “golden testbed” for fuzzing.

Despite the intuition to leverage PHP official test cases
for fuzzing, there still remains a key challenge—how to en-
rich code semantics of test cases to reveal memory errors?
Specifically, even though the test cases are well-maintained
with valid syntax, they are limited to simple code semantics
given their unit-test-like nature. Ideally, we could extend the
official test suite to create a larger and more comprehensive
test suite. One approach is to craft semantically enriching
code transformations, but doing so either remains inefficient
if implemented as byte-level mutations or requires significant
expertise and manual effort. To develop a practical automated

Listing 1: A 20-year-old memory error found by FlowFusion
/* Test A */
/* Test A dataflow: $dom → $ref → $nodes */

$dom = new DOMDocument;
$dom->loadXML(..);
$ref = $dom->documentElement->firstChild;
$nodes = $ref->childNodes;

/* Test B */
/* Test B dataflow: $values → $str → $enc */

$values = array(..);
foreach($values as $str)
{ $enc = base64_encode($str); }

/* Our Fused Test */
/* Dataflow fusion:$nodes → $fusion ← $values */

$dom = new DOMDocument;
$dom->loadXML(..);
$ref = $dom->documentElement->firstChild;
$fusion = $ref->childNodes;
$values = array(..);
foreach($fusion as $str)

{ $enc = base64_encode($str); }
/* AddressSanitizer: heap-use-after-free */

fuzzing strategy, we propose an alternative method of merg-
ing test cases. However, simply concatenating two existing
tests is ineffective, as it yields the same outcome as running
them independently. To extend existing test cases into more
effective ones, it is essential to capture and extend their code
semantics. A standard approach is to extract the control flow
and data flow of PHP programs in the official test suite.
Observation 2: Most official tests (96.1%) exhibit sequential
control flow (i.e., no branches)—the code semantics of such
programs can be effectively represented by mere dataflow.

To address the challenge of generating semantics-rich test
cases, we use dataflow interleaving to bridge the dataflow of
two official tests, creating new code interactions (semantics)
that were previously non-existent. For example, in Listing 1,
test A verifies DOM objects and their entity references, and
test B checks base64 encoding. However, the official test
suite does not account for more complex code semantics,
such as encoding DOM-related objects using base64, which
might occur in real-world scenarios. To this end, we combine
these cases, alongside their semantics, thereby generating
new code functionalities. We first present their dataflows con-
sisting of dataflow A ([$dom→$ref→$nodes]) and dataflow B
([$values→$str→$enc]). Then, we interleave their dataflows
by connecting a variable from dataflow A (e.g., $nodes) to a
variable from dataflow B (e.g., $values). The connected vari-
ables are fused with a new one named $fusion. As such, this
real-world bug triggers an unknown 20-year-old use-after-free
memory error (i.e., it crashes PHP v5.0.0 released in 2004 and
later versions) during the foreach iteration. By carefully craft-
ing a malicious DOM, an adversary might exploit the memory
vulnerability and compromise the host server supporting the

PHP interpreter.
In this work, we present FlowFusion, a novel approach to

automate the discovery of memory errors in the PHP inter-
preter with the sanitizer oracle.1 FlowFusion generates fused
tests2 which contain enriched code semantics from dataflow
interleaving. We term our dataflow-driven test merging ap-
proach as dataflow fusion. Additionally, FlowFusion employs
several complementary strategies to more effectively uncover
memory errors as follows.
• Test mutation. It mutates official test cases before their

dataflows are interleaved. Test mutation is based on expres-
sion replacement, either replacing existing constants with
special values, or replacing variables interchangeably.

• Interface fuzzing. It further makes use of more complex
code semantics in fused test cases by calling random PHP
functions with variables from fused test cases as arguments.

• Environment crossover. It merges the execution environ-
ments (e.g., required modules, configurations) of fused test
cases and further inserts random valid execution environ-
ment options collected from the official test suite.
We conducted experiments to assess the effectiveness of

our approach. Remarkably, we detected 158 unique and pre-
viously unknown bugs in the PHP interpreter, of which 125
have been fixed and 11 confirmed. These bugs span 10 differ-
ent Common Weakness Enumerations (CWEs) and affected
over 80 individual source files in the PHP interpreter with the
fixes changing over 5k lines of code.

We compared the effectiveness of FlowFusion against the
official test cases and a simple concatenation approach of
these test cases. The results demonstrate that FlowFusion not
only detects more memory errors but also achieves higher
code coverage. Additionally, we compared FlowFusion with
state-of-the-art fuzzing techniques known for uncovering
memory errors in the PHP interpreter. Specifically, FlowFu-
sion outperformed AFL++ [12] and PolyGlot [8] by covering
24% more lines of code after 24 hours of fuzzing under the
same execution conditions.

We performed an ablation study of our primary ap-
proach—dataflow fusion—alongside other strategies such as
test mutation, interface fuzzing, and environment crossover.
The results provide a deeper understanding of how each strat-
egy contributes to our approach’s overall effectiveness. Flow-
Fusion is recognized by the PHP developers and has been
integrated into the official toolchain.3

In summary, we make the following contributions:
• We propose a novel approach to discover memory errors in

the PHP interpreter, called dataflow fusion. Based on the
good quality and quantity of official test cases in the PHP

1We use Address Sanitizer [46] (i.e., ASan) and Undefined Behavior Sanitizer
(i.e., UBSan). Most of the ASan and UBSan reports belong to memory errors
except arithmetic overflow.

2Fused tests exhibit inherent diversity: combining pairs from the 19k official
tests can produce over 300 million new tests.

3FlowFusion is available at https://github.com/php/flowfusion

https://github.com/php/flowfusion

interpreter, we expand the test suite with fused test cases in
new code semantics by interleaving their dataflows.

• We implement our approach along with test mutation, in-
terface fuzzing, and environment crossover as the first au-
tomatic fuzzing framework, FlowFusion, which effectively
achieves comprehensive coverage in the PHP interpreter.

• FlowFusion has proven effective in discovering new bugs
in the PHP interpreter. In total, we identified 158 unknown
bugs, of which 125 have been fixed and 11 confirmed.

2 Background

In this paper, the PHP interpreter refers to the official imple-
mentation.4 It comprises three primary components: the Zend
engine (i.e., the zend directory) is PHP’s core execution en-
gine, encompassing the bytecode compiler, runtime executor,
and memory management routines. It transforms PHP scripts
into opcodes and executes them. The core modules (i.e., the
ext directory) contain PHP’s built-in and bundled extensions
(e.g., session, sqlite3), with each subfolder providing source
code that extends the language beyond the core engine. The
main functions (i.e., the main directory) hold essential PHP
runtime and infrastructure code that initializes and orches-
trates the interpreter, including entry points, configuration
loading, and the main execution loop.

Memory errors in the PHP interpreter. Statistics show
that PHP ranks top 50 in the ranking for projects with the
most vulnerabilities [9]. Given its complex codebase and
written in the memory-unsafe language (i.e., C), it is prone
to memory errors such as buffer overflows and use-after-free.
We conducted a study of public issues reported from 2022
to 2024 in the official PHP GitHub repository, up to August
2024. Out of 567 verified and closed issues, we identified
191 as memory errors, representing a significant proportion
(33.7%) of all resolved bugs.

To better understand the root cause of these memory errors,
we conducted a triage analysis for the 191 reported bugs. Due
to the lack of issue normalization and diverse bug descriptions,
we manually categorized these bugs into 10 categories based
on the issue reports, conversations, and patches. The result
indicates that null dereference, memory leak or exhaustion,
and buffer overflow or underflow are the three most common
memory errors in PHP interpreter, accounting for more than
10% each. In addition, use-after-free bugs also occur occa-
sionally, reaching 7%. These bugs can lead to the aforesaid
various security risks. In particular, use-after-free and buffer
overflow ranked first and second respectively in the “2023
CWE Top 10 Known Exploited Vulnerabilities (KEV) Weak-
nesses” list [33], indicating their high exploitability and the
urgency of detection.

The official PHP test suite. The PHP community main-

4https://github.com/php/php-src

Listing 2: Example test case in the official test suite
--TEST--
FFI 007: Pointer comparison

--EXTENSIONS--
ffi

--INI--
ffi.enable=1

--FILE--
<?php

$ffi = FFI::cdef();
$v = $ffi->new("int*[3]");
$v[0] = $ffi->new("int[1]", false);
$v[1] = $ffi->new("int[1]", false);
$v[2] = $v[1];
$v[1][0] = 42;
var_dump($v[0] == $v[1]);
var_dump($v[1] == $v[2]);
FFI::free($v[0]);
FFI::free($v[1]);

?>
--EXPECT--
bool(false)
bool(true)

tains the official test suite, which aids in verifying both the
correctness and robustness of the PHP interpreter. The PHP
test suite has over 19k distinct test cases, encompassing a
wide range of code semantics with valid syntax. These test
cases cover over 80 unique modules in the PHP interpreter
and integrate with all existing bug-triggering reproducers as
additional security test cases. While the overall test suite has
diverse code semantics, the individual test case only verifies
the functionality or the correctness of a single component.
Therefore, 96.1% of these test cases exhibit sequential control
flow and execution without branches. Listing 2 shows one
example test case, which verifies the correctness of pointer
comparison in the Foreign Function Interface (FFI) compo-
nent of the PHP interpreter.

The official test cases are in a special format consisting
of sections delimited by --section-- and formatted in .phpt

file. It contains over 30 sections5 representing different mean-
ings. Referring to Listing 2, we introduce some important
sections as follows: (i) --test-- section is a brief description
of the test; (ii) --extensions-- section details the extensions
required for the test; (iii) --ini-- section gives the specific
configurations needed; (iv) --file-- section contains the PHP
program; and (v) --expect-- section specifies the expected
test results.

Dataflow of PHP programs. Dataflow analysis [22] in-
volves tracking how data values propagate and are manipu-
lated across different parts of a program. This includes identi-
fying which variables are defined, used, or modified at differ-
ent points in the code and understanding how these changes
impact program behavior.

Given a node n in the control flow graph of the program,

5https://qa.php.net/phpt_details.php

https://github.com/php/php-src
https://qa.php.net/phpt_details.php

dataflow analysis considers the following four properties: the
Gen Set (GEN(n)) is the set of definitions generated (i.e.,
initialized) at a particular node n; the Kill Set (KILL(n))
is the set of definitions that are killed (i.e., overwritten or
invalidated) by the execution of a node n; the In Set (IN(n))
represents the set of dataflow facts coming into of a node
n; the Out Set (OUT(n)) represents the set of dataflow facts
going out of a node n.

In this work, we treat each statement in the test program as
a node and denoted as ni, where i indicates the sequence of
statements. Given a program P with N statements, we consider
the P’s dataflow as the collection of In Sets and Out Sets from
all N statements, as shown in Equation 1. Based on these sets
of dataflow facts, one can infer the dataflow graph (we omit it
for simplicity) of the program.

Flow(P) = {IN(ni),OUT(ni) | ∀i ∈ N} (1)

For calculating the In Set, considering the sequential con-
trol flow of test programs, only the preceding statement has
the coming-in dataflow facts. In Equation 2, the In Set contain-
ing the dataflow facts coming in is represented as the empty
set when the first statement, and propagated from going out
dataflow facts of preceding statement otherwise.

IN(ni) = /0 if i = 0 else OUT(ni−1) (2)

To calculate the Out Set, we consider the definitions that
are newly generated or eliminated, as represented by the Gen
Set and the Kill Set. For dataflow facts related to function
calls, the conventional approach is to either perform dataflow
analysis within the function or utilize function summaries.
Our method assumes that return values have data dependen-
cies on function arguments for better efficiency. We notate
these dataflow facts using the Fun Set (FUN(n)). Accordingly,
we express the Out Set as shown in Equation 3. Specifically,
the outgoing dataflow facts comprise elements from the in-
coming set, the generated set, and the function call set, while
excluding those definitions that have been killed.

OUT(ni) = GEN(ni)∪ (IN(ni)\KILL(ni))∪FUN(ni) (3)

In this paper, we use the notation ([v1]→[v2]→. . .

[vm−1]→[vm]) to concisely represent dataflow from variable
v1 to vm in PHP programs.

3 Threat Model

Memory errors pose inherent security risks and frequently
lead to vulnerabilities in the PHP interpreter. According to
vulnerability statistics for PHP, [44], more than 80% (179/220)
of PHP CVEs in the past decade resulted from overflows
or memory corruptions. Google OSS-Fuzz [45] project also
considers PHP an interesting target for finding memory errors.
Malicious users can attack PHP servers in the following ways:

(a) Malicious input interactions. Attackers may craft spe-
cific inputs to PHP applications, resulting in direct user data
leakage. For instance, there are interfaces from officially
disclosed vulnerabilities, one heap buffer over-read [36] in
the mysqlnd PHP extension and another overflow [37] in
phar_dir_read(). With such vulnerable interfaces, the attack-
ers are allowed to craft SQL queries or phar files to retrieve
data. Such memory errors are linked to user inputs and can
be exploited in common web applications via malicious data.

(b) Malicious code injections. Another way for attackers
is to exploit non-interactive memory errors by using custom
PHP script execution. Such code injections are common in on-
line PHP editors or coding sandboxes. In these environments,
users can run arbitrary code yet are prevented from execut-
ing system commands, since dangerous functions are usually
disabled on well-maintained servers. Although under such re-
stricted conditions, memory errors offer an alternative attack
surface to bypass security measures or mitigation [11,43]. Pre-
vious work, Polyglot [8], provides a detailed example of how
a memory error can be exploited to escape PHP sandboxes.

4 Approach

In this section, we first present an overview of our approach in
Section 4.1, outlining the multiple steps to detect memory er-
rors in the PHP interpreter. Then, we provide a detailed expla-
nation of our key method, dataflow fusion, in Section 4.2. Ad-
ditionally, we describe other important strategies employed in
this work to facilitate memory error detection in Section 4.3.

4.1 Approach Overview
Our approach is designed to uncover memory errors in the
PHP interpreter. We utilize existing official test cases as seed
programs to generate numerous new fused tests for continu-
ous automatic fuzzing. The advantages of reusing the official
test suite are twofold: (i) these tests are well-maintained over
time with valid grammar and rich semantics, and (ii) their
large quantity provides a substantial basis for test generation.
By combining two or more tests, one can create a very much
larger set of test cases which can also inherit the quality of the
original tests. Our approach is inherently compatible and sus-
tainable with the continuous addition of official test cases by
PHP developers, which can automatically cover new features
and bugs, ensuring more comprehensive testing.

We designed our approach with the following seven steps:
(1) corpus initialization, (2) test mutation, (3) dataflow anal-
ysis, (4) interface fuzzing, (5) environment crossover, (6)
dataflow fusion, and (7) result analysis. We present the
overview of our approach in Figure 1 with a real unknown
segmentation fault6 found by FlowFusion.

At step 1 , FlowFusion initializes the test corpus with the
19k unique test cases from the official test suite. We first ran-

6https://github.com/php/php-src/issues/14741

https://github.com/php/php-src/issues/14741

Test Mutation

<?php
$dom = new DOMDocument;
$dom->loadXML
('<foo>foo1</foo>'NULL);
$nodes += $dom->
documentElement->
childNodes;
$iter = $nodes->$dom->
getIterator();

diff const

fused1.phpt
fused7.phpt

00001.phpt
00002.phpt

00003.phpt

18776.phpt
… Dataflow A

Dataflow Analysis

Test A Test B

Dataflow B

Interface
Fuzzing

Environment
Crossover

<?php
function callapi($v1, $v2, ..) {..}

$dom = new DOMDocument;
$dom->loadXML(…);
$nodes = $dom->…;
$fusion = $nodes->getIter…();
$fusion->next();

function gen() { yield; }
$gen = gen();
clone $fusion;

$v1 = $dom; $v2 = $gen;
callapi($v1, $v2, …);

Dataflow Fusion

Fuzzing and
Analysis

fused1.phpt
fused2.phpt

fused3.phpt
PHP Interpreter (with Sanitizers) Verifier / Reducer

*Mutated Variable

*Mutated Operator

*Mutated Constant

Inserted Statements

*: occur in low mutation probability

get_defined_..()

get_extension..()

getParameters()

ReflectionClass..

Dataflow
Interleaving

Test B

Test A

--TEST--
Generators cannot be cloned
--FILE--
<?php
function gen() { yield; }
$gen = gen(); clone $gen; ?>
--EXPECTF--
Fatal error: Uncaught Error:
Trying to clone an uncloneable
object of class Generator in …

--TEST--
Crash in childNodes iterator
--FILE--
<?php
$dom = new DOMDocument;
$dom->loadXML('<foo>foo1</foo>');
$nodes = $dom->
documentElement->childNodes;
$iter = $nodes->getIterator();
$iter->next();

Bug Reports

Inserted Statements

Test B

--INI-- ~ --INI--

--EXT-- ~ --EXT--

--DBG-- ~ --DBG--

--ENV-- ~ --ENV--

Corpus Initialization

Test A

Figure 1: Approach Overview — Illustrated with Segfault Error Found by FlowFusion in the Zend Engine

domly select two seed tests from the corpus (for simplicity,
we consider two tests, but more can be used). At step 2 ,
FlowFusion applies test mutations to these chosen tests. The
key idea behind test mutation is to introduce additional ran-
domness or perturbations (in a low probability) to the seed
tests before they are fused. This is done by interchangeably
replacing operands or expressions, or substituting them with
special values.

At step 3 , FlowFusion employs a variable-level dataflow
analysis on the program of each test. In Figure 1, FlowFusion
finds the dataflow ([$dom→$nodes→$iter]) in test A and the
dataflow ([gen()→$gen]) in test B. The extracted dataflows
will be used at step 6 later. Next, FlowFusion prepares state-
ments for fuzzing interfaces provided by the PHP interpreter
at step 4 . It reuses variables from the fused code semantic as
the arguments to call random functions implemented by PHP
developers. We insert statements above and below the fused
test to define random function calls, randomly select variables
as arguments, and invoke function interfaces accordingly.

At step 5 , FlowFusion first merges the execution environ-
ments of seed tests and then inserts random configurations
from the test suite. As described in Section 2, the official
test cases include not only the PHP program but also other
sections, such as required modules and configuration settings.
Environment crossover begins by merging other sections of
two seed test cases and then randomly inserts random con-
figurations that are collected from the official test suite. This
process ensures that the prerequisite conditions for fused tests
are met by combining these additional sections, while also in-
troducing variability into the execution environments through
random configuration insertions.

At step 6 , dataflow fusion links some dataflows from test
A with test B to connect two seed tests. The key insight is
to interleave dataflow by connecting variables across seed
tests. As shown in Figure 1, our approach creates a new test

by replacing variable $iter and $gen with a bridging variable
$fusion by the guidance of extracted dataflow in the previous
step. The code semantic is changed accordingly, now cloning
the DOM node rather than previously a function object, which
is not tested in the official test suite. Details of dataflow fusion
are explained in Section 4.2.

Finally, in step 7 , after our approach completes dataflow
fusion, the PHP interpreter is invoked to execute the fused test
cases and check for any sanitizer violations. We rely on the
sanitizer oracle (i.e., ASan and UBSan) to detect bugs. Note
that although we focus on detecting memory error bugs, as we
are using an undefined behavior sanitizer, we also catch other
bugs like integer overflows. The execution generates logs of
standard inputs and errors, as well as reproducing scripts. We
use these outputs to deduplicate crashes by checking the crash
site and mapping the backward stack trace. Once verified,
FlowFusion reduces the reproducer of sanitizer violations to a
minimal version using delta debugging [57]. Last, we assess
the potential security impact of the discovered bugs and follow
the PHP community’s disclosure policy: (i) reporting low-
severity bugs (e.g., null pointer dereference) directly at issues
and (ii) reporting high-severity bugs (e.g., stack overflow,
heap use-after-free) at the security page, where vulnerability
reports remain private until analyzed and fixed.

4.2 Dataflow Fusion
We introduce our core insight, dataflow fusion, by referring to
Algorithm 1. Dataflow fusion aims to combine two programs,
A and B, extracted from two random seed tests, into a single
fused program F . The process begins by calculating the IN
and OUT sets of dataflow facts for each program using the
ComputeDataflowSets function. This function initializes
the IN and OUT sets for each node within a program based
on GEN and FUN sets and iteratively computes these sets

using Equation 2 and Equation 3. Specifically, for each node
ni, the IN set is derived from the OUT set of the preceding
node, while the OUT set is computed using a union of GEN,
IN, and FUN sets minus the KILL set.

Algorithm 1 Pseudocode of Dataflow Fusion
1: Input: programs A, B extracted from two random seed tests
2: Output: fused program F
3: function COMPUTEDATAFLOWSETS(P)
4: Initialize IN(n1) = /0 and OUT(n1) = GEN(n1)∪FUN(n1)
5: for i = 2 to N do
6: Compute IN(ni) = OUT(ni−1)
7: Compute OUT(ni) = GEN(ni)∪ (IN(ni)\KILL(ni))∪FUN(ni)
8: end for
9: return {IN(ni),OUT(ni) | ∀i ∈ {1,2, . . . ,N}}

10: end function
11: do create a new shared variable f usion that connects to both programs
12: let FSA ← COMPUTEDATAFLOWSETS(A) ▷ sets of dataflow facts
13: do identify all dataflows DFA in FSA by dataflow propagation
14: let d f A

i ∈ DFA be each dataflow in DFA

15: let wA
i ← number of variables for each dataflow d f A

i
16: let d f A

selected← weighted random selection using {wA
1 ,w

A
2 , . . . ,w

A
|DFA |}

17: let V A← the set of variables in d f A
selected

18: let vA← random variable selection from V A to be replaced
19: do identify all locations LA = {l1, l2, . . . , lm} in A where vA appears
20: for each l ∈ LA do
21: do replace vA with f usion at location l with a probability p
22: end for
23: let A′← A ▷ new program after replacements
24: do repeat lines 12-22 for program B and get B′

25: let F ← A′+B′ ▷ with shared variable, concatenate new programs
26: return F ▷ finish dataflow fusion, return fused program

The fusion process involves creating a shared variable
called $fusion to connect programs A and B. The algo-
rithm identifies all dataflows within program A by propagating
among sets of dataflow facts via dataflow analysis. Next, it
assigns weights to these dataflows based on the number of
variables. The algorithm then randomly selects a dataflow
d f A

selected from program A using a weighted selection process.
Within this selected dataflow, a variable is chosen randomly,
and all its locations in program A are identified.

The final steps of the algorithm involve randomly replacing
occurrences of the selected variable in program A with the
shared variable $fusion with probability p (we used p=0.5),
resulting in a modified program A′. The same process is re-
peated for program B, yielding a modified program B′. The
fused program F is then created by concatenating A′ and B′

with the shared variable, completing the dataflow fusion. The
algorithm returns the fused program F as the final output.

We highlight that compared to a naive approach to bridge
the last variable of the first test to the first variable of the
second test, we introduce more diversity (and randomness)
to create many more possible versions of the fused test case
which in turn leads to new coverage as shown by the exper-
iments. We introduce the following heuristics: (i) Random
dataflow. Each test can have multiple dataflows. We assign dif-
ferent weights to each dataflow and randomly select the fused
dataflow based on the weights. (ii) Random variable. Each

dataflow can have multiple variables. FlowFusion randomly
picks one variable as the connection variable to be replaced by
an intermediate variable. (iii) Random replacement. When in-
terleaving dataflow, FlowFusion randomly picks one or more
places of each variable from the source code and replaces
them with an intermediate variable that connects to both tests.

The example presented in Figure 1 shows the power of
dataflow interleaving and the heuristics above. Our approach
changes the semantics of the test B by replacing the last oc-
currence of $gen (i.e., clone $gen becomes clone $fusion).
Note that this particular fusion has maintained the semantics
of gen() using yield. We contrast with a naive dataflow fusion
that connects the last variable of test A and the first variable
of test B (i.e., $iter and $gen), this does not find the memory
error since the semantics is different. Another possible fusion
is to link the final clone statement with an empty object. We
have tested and such a trivial fusion does not trigger the bug.

4.3 Further Strategies
We introduce three helpful strategies along with dataflow
fusion when combining seed tests.

Test mutation. In addition to dataflow fusion, FlowFusion
adds mutations to seed programs before they are analyzed
and fused to provide more code semantics. Our approach
introduces small differences by replacing expressions and
operands. We list some demonstrative test mutations in the
following table with examples. They are effective while main-
taining valid syntax. Each test mutation is applied at a small
rate to introduce extra randomness to the seed programs.

ID Expression Replacements Example
01 arithmetic other arithmetic operands $a = $b (%)+ 1
02 assignment other assignment operands $a (=)*= $b + 1
03 logical other logical operands $a = $b (and)or 1
04 integer special values like int_max $a = $b + (1)int_max
05 string special values like null $a = $b.("a")null
06 variable other variables $a = ($b)$c + 1

Interface fuzzing. Dataflow fusion introduces new,
more complex code semantics. FlowFusion fuzzes inter-
nal PHP interfaces (i.e., existing functions implemented
by PHP developers) in the enriched code semantics of
fused tests. The insight is to test the robustness of func-
tion implementations with more complex code seman-
tics, which might not have been tested previously. Specifi-
cally, FlowFusion inserts additional statements both above
and below the fused program. The inserted statements in-
clude a fuzzing function that invokes random PHP func-
tions and collects variables (using get_defined_vars())
from the fused test as the function arguments. For ob-
taining available PHP function interfaces, FlowFusion
uses internal functions (e.g., get_defined_functions(),
get_loaded_extensions(), and get_extension_funcs()) to
dynamically fetch around 1,682 functions (excluding posix-

related functions) as the interface candidates. FlowFusion
uses the ReflectionFunction PHP class and its method
getNumberOfParameters(), getParameters(), and getType()

to determine the number and types of function parameters dy-
namically. FlowFusion also inserts various logging statements
to record execution for bug reproduction.

<?php
class A { public $prop { get {} } }
class B extends A { }
get_class_vars(’B’);

/* UBSan: apply non-zero offset to null pointer */

The reduced program above shows an unknown segmen-
tation fault FlowFusion found via interface fuzzing. We call
the function (i.e., get_class_vars()) by reusing the variable
(reduced) with the value “B” from the fused code.

Environment crossover. FlowFusion merges other sec-
tions of test cases and inserts additional randomness of
PHP configurations. Other significant sections contain the
--extension-- and --ini--, which specifies the execution
environments of executing the tests. When fusing dataflow,
FlowFusion also performs a crossover mutation by merging
other sections. Additionally, for --ini-- section, the official
test cases provide a wide range of options so that FlowFusion
collects them as a dictionary and applies configurations ran-
domly. Interesting configurations include memory limits, JIT
mode, optimization levels, opcache,7 and script preload. Flow-
Fusion fuzzes the PHP interpreter with fused code semantics
along with changing environments. This strategy brings extra
effectiveness to memory error detection. For example, we
detect 3 memory errors related to phpdbg8 by merging the
debugging instructions in --phpdbg-- sections.

5 Implementation

FlowFusion fuzzer. FlowFusion’s fuzzer is built upon the
official testing script used in the PHP interpreter. This script
checks all “.phpt” files, parses each section, and invokes the
PHP interpreter to gain execution results. However, the script
is not designed to handle customized “.phpt” files and oc-
casionally terminates the fuzzing process unexpectedly. To
address this, we patched the script by commenting out sev-
eral lines, increasing its tolerance for execution failures, and
ensuring our fuzzing completes successfully in parallel.

Bug verifier and PHP program reducer. We use the re-
producing scripts generated by the official script to verify
detected memory errors. After verification, we rerun verified
memory errors in the normal PHP interpreter without sanitizer
to observe their outputs (i.e., crash or not). We implemented
our PHP program reducer based on the principles of delta
debugging [57]. The algorithm systematically comments out

7https://www.php.net/manual/en/book.opcache.php
8https://www.php.net/manual/en/book.phpdbg.php

specific lines or groups of lines to determine whether the bug
oracle (sanitizers) continues to trigger an abort. If the issue
persists, those lines are discarded, resulting in a reduced ver-
sion of the program. This process is repeated iteratively until
no smaller reproducer can be found. Our reducer effectively
reduces the bug-inducing program (typically reducing it to
∼ 10% of its original size). Other tools like C-Reduce [39]
can be applied to further reduce the program size.

6 Evaluation

In this section, we answer the following questions to assess
various important aspects of FlowFusion:
• New memory errors. How effective is FlowFusion in dis-

covering new memory errors in the PHP interpreter?
• Improved effectiveness. To what extent does FlowFusion

improve the effectiveness compared to (i) the official test
suite and (ii) test concatenation?

• Comparison with existing approaches. What is the im-
provement in fuzzing the PHP interpreter with the state-of-
the-art fuzzing approaches?

• Ablation study. What is the impact of each strategy of
FlowFusion on contributing to the overall effectiveness?

PHP version and compilation. In Section 6.1, as well
as during daily fuzzing, we compiled the latest com-
mit of PHP interpreter using clang-15,9 with debug sym-
bols, address sanitizers, and undefined behavior sanitiz-
ers enabled. In other sections (6.2, 6.3, and 6.4), we per-
formed evaluations on a specific commit (i.e., v8.3.3,
3a832a2aad405466c24a5e8e5798cf9de14fda14) of the PHP
interpreter. For Sections 6.2 and 6.4, we compiled the PHP
interpreter using Ubuntu 22.04’s default CC (gcc-11.4.0) for
better compatibility, with debug symbols, sanitizers, and gcov
support enabled. In Section 6.3, we instead used afl-gcc for
comparison with existing work, while similarly enabling de-
bug symbols, sanitizers, and gcov support.

Evaluation metrics. We explain two evaluation metrics
we used in this section to measure the effectiveness of Flow-
Fusion and related approaches. (i) Code coverage. Code cov-
erage is a widely used metric for evaluating the effectiveness
of fuzzing approaches [41, 42]. We collect code coverage
using gcovr [13]. We follow the suggested gcovr from the
official Makefile to measure the overall code coverage. We
only report line code coverage in this work and omit the other
coverage metrics because they follow a similar trend. (ii)
Number of unique crash sites. We define the crash site as the
unique file path of the PHP interpreter and line number from
the sanitizer abort, which we use to approximate the num-
ber of detected bugs. For example, the motivating example
in Listing 1 has the following sanitizer abort “AddressSani-

9We chose Clang given it has greater and more accurate sanitizer support, also
shown by evaluation of memory error defenses [20].

https://www.php.net/manual/en/book.opcache.php
https://www.php.net/manual/en/book.phpdbg.php

tizer: heap-use-after-free /php-src/ext/dom/php_dom.c:311”
with the crash site being highlighted in italics. After a period
of fuzzing, the number of unique crash sites can be used to
de-duplicate similar aborts, hence demonstrating the effective-
ness of various fuzzing approaches. Based on our experience,
most previously unknown crash sites can be reported as bugs
to the PHP interpreter and are likely to be fixed.

Experimental infrastructure. All experiments were con-
ducted on an AMD EPYC 7763 processor with 64 physical
cores and 128 logical cores, clocked at 2.45 GHz. The test
machine ran Ubuntu 22.04 and was equipped with 512 GB
of RAM. By default, FlowFusion uses a modest computing
resource, 32 CPU cores with up to 32 GB of RAM, capable
of finding various crash sites within 24 hours.

6.1 Discovering Unknown Memory Errors
To discover unknown memory errors in the PHP interpreter,
we intermittently tested the latest version of the PHP in-
terpreter, compiled from the php-src repository, over a six-
month period. This approach aligns with standard methodolo-
gies for evaluating the effectiveness of automatic bug-finding
tools [21, 42]. Next, we reduced the merged test cases and
verified whether the issues had already been reported on issue
trackers to avoid duplicate bug reports. Bug-inducing test
cases generated by FlowFusion are often complex; we auto-
matically simplified them to smaller, bug-inducing versions
using delta debugging [57]. Below, we illustrate memory er-
rors using these reduced PHP programs.

Results. Table 1 shows information about the first 50 bugs
found by FlowFusion. The column Bug Type shows the cor-
responding Common Weakness Enumeration (CWE) type of
bugs10 to concisely present their root causes. All reported
memory errors were identified with the sanitizer oracles, and
the Crash column shows bugs that could crash the program
even without sanitizers enabled, highlighting cases with more
severe impacts. The Bug Location provides the accurate bug
locations of all fixed bugs. The Issue ID column provides the
official GitHub issue number of the corresponding bug. The
Status shows the bug status. We classified the bug status into
the following disjoint categories:
- Pending (Pd) bugs refer to the bugs submitted but awaiting

further investigation to confirm the root cause.
- Expected (Ep) bugs refer to the bugs been confirmed but

developers believe they are expected behaviors.
- Confirmed (Cf) bugs refer to the bugs that have been con-

firmed but have not been fixed.

10The bugs found by FlowFusion covered the following CWEs: CWE-121
Stack-based Buffer Overflow, CWE-122 Heap-based Buffer Overflow, CWE-
124 Buffer Underwrite, CWE-190 Integer Overflow or Wraparound, CWE-
401 Missing Release of Memory after Effective Lifetime, CWE-416 Use
After Free, CWE-457 Use of Uninitialized Variable, CWE-476 NULL Pointer
Dereference, CWE-824 Access of Uninitialized Pointer, CWE-825 Expired
Pointer Dereference

Table 1: First 50 Bugs Found by FlowFusion

ID Bug Type Crash Bug Location Issue ID Status Fixes
01 CWE-825 ✓ session.c 13680 Fx +28 -2
02 CWE-476 ✓ phpdbg_watch.c 13681 Fx +51 -6
03 CWE-476 ✓ spl_directory.c 13685 Fx +80 -18
04 CWE-121 - - 13768 Ep
05 CWE-476 ✓ phpdbg_frame.c 13827 Fx +41 -2
06 CWE-476 ✓ phar.c 13833 Fx +68 -20
07 CWE-476 ✓ zend_jit.c, .. 13834 Fx +29 -24
08 CWE-476 ✓ stream.c 13836 Fx +36 -2
09 CWE-476 ✓ mod_user_class.c 13856 Fx +23 -2
10 CWE-190 - - 13881 Pd
11 CWE-124 - - 13903 Ep
12 CWE-476 ✓ main.c 13931 Fx +52 -0
13 CWE-122 ✓ sqlite_driver.c 13984 Fx +19 -1
14 CWE-457 ✓ sqlite_driver.c 13998 Fx +25 -1
15 CWE-401 - compat.c 14044 Fx +35 -5
16 CWE-190 - - 14075 Pd
17 CWE-476 ✓ - 14082 Cf
18 CWE-824 ✓ xml.c 14124 Fx +28 -0
19 CWE-121 ✓ - 14164 Ep
20 CWE-476 ✓ spl_iterators.c 14290 Fx +24 -3
21 CWE-401 - document.c 14343 Fx +24 -1
22 CWE-121 ✓ zend_compile.c, .. 14361 Fx +54 -8
23 CWE-476 ✓ zip.c 14603 Fx +1 -1
24 CWE-476 ✓ simplexml.c 14638 Fx +57 -24
25 CWE-476 ✓ spl_observer.c 14639 Fx +29 -4
26 CWE-824 ✓ basic_functions.c 14643 Fx +5 -2
27 CWE-824 ✓ php_dom.c 14652 Fx +21 -1
28 CWE-825 ✓ spl_directory.c 14687 Fx +42 -1
29 CWE-825 ✓ libxml.c 14698 Fx +29 -3
30 CWE-190 - - 14709 Pd
31 CWE-476 ✓ zend_execute.c, .. 14712 Fx +32 -1
32 CWE-190 - - 14732 Pd
33 CWE-825 ✓ zend_interfaces.c 14741 Fx +18 -0
34 CWE-190 - basic_functions.c 14774 Fx +29 -0
35 CWE-190 - array.c 14775 Fx +16 -0
36 CWE-190 - file.h 14780 Fx +62 -7
37 CWE-476 ✓ output.c 14808 Fx +18 -1
38 CWE-476 ✓ text.c 15137 Fx +14 -1
39 CWE-190 - - 15150 Pd
40 CWE-121 ✓ - 15168 Cf
41 CWE-121 ✓ - 15169 Cf
42 CWE-476 ✓ url_scanner_ex.re 15179 Fx +24 -1
43 CWE-476 ✓ output.c 15181 Fx +19 -0
44 CWE-825 ✓ - 15187 Cf
45 CWE-825 ✓ php_dom.c 15192 Fx +77 -1
46 CWE-824 ✓ phpdbg_bp.c 15208 Fx +57 -0
47 CWE-416 ✓ phpdbg.h, .. 15210 Fx +75 -3
48 CWE-122 ✓ phpdbg_info.c 15210 Fx +34 -6
49 CWE-416 ✓ nodelist.c 15143 Fx +29 -2
50 CWE-416 ✓ php_pcre.c, .. 15205 Fx +58 -47

- Fixed (Fx) bugs refer to the bugs that have been confirmed
and patched by the developers.

Bug diversity. In total, we identified 158 previously un-
known bugs. Of these, 18 are still pending triage, 4 were
expected, 11 have been confirmed, 0 were marked as dupli-
cates, and 125 have already been fixed. All 158 errors were
detected by sanitizers, and 39 of them caused the PHP inter-
preter to crash when compiled normally without sanitizers.
We present the first 50 bugs listed in Table 1, which covers
nearly all common types of memory errors. This also demon-
strates that FlowFusion can significantly enhance the security
of the PHP interpreter finding many different errors across dif-

https://github.com/php/php-src/blob/master/ext/session/session.c
https://github.com/php/php-src/issues/13680
https://github.com/php/php-src/blob/master/sapi/phpdbg/phpdbg_watch.c
https://github.com/php/php-src/issues/13681
https://github.com/php/php-src/blob/master/ext/spl/spl_directory.c
https://github.com/php/php-src/issues/13685
https://github.com/php/php-src/issues/13768
https://github.com/php/php-src/blob/master/sapi/phpdbg/phpdbg_frame.c
https://github.com/php/php-src/issues/13827
https://github.com/php/php-src/blob/master/ext/phar/phar.c
https://github.com/php/php-src/issues/13833
https://github.com/php/php-src/blob/master/ext/opcache/jit/zend_jit.c
https://github.com/php/php-src/issues/13834
https://github.com/php/php-src/blob/master/ext/phar/stream.c
https://github.com/php/php-src/issues/13836
https://github.com/php/php-src/blob/master/ext/session/mod_user_class.c
https://github.com/php/php-src/issues/13856
https://github.com/php/php-src/issues/13881
https://github.com/php/php-src/issues/13903
https://github.com/php/php-src/blob/master/main/main.c
https://github.com/php/php-src/issues/13931
https://github.com/php/php-src/blob/master/ext/pdo_sqlite/sqlite_driver.c
https://github.com/php/php-src/issues/13984
https://github.com/php/php-src/blob/master/ext/pdo_sqlite/sqlite_driver.c
https://github.com/php/php-src/issues/13998
https://github.com/php/php-src/blob/master/ext/xml/compat.c
https://github.com/php/php-src/issues/14044
https://github.com/php/php-src/issues/14075
https://github.com/php/php-src/issues/14082
https://github.com/php/php-src/blob/master/ext/xml/xml.c
https://github.com/php/php-src/issues/14124
https://github.com/php/php-src/issues/14164
https://github.com/php/php-src/blob/master/ext/spl/spl_iterators.c
https://github.com/php/php-src/issues/14290
https://github.com/php/php-src/blob/master/ext/dom/document.c
https://github.com/php/php-src/issues/14343
https://github.com/php/php-src/blob/master/Zend/zend_compile.c
https://github.com/php/php-src/issues/14361
https://github.com/php/php-src/blob/master/ext/phar/zip.c
https://github.com/php/php-src/issues/14603
https://github.com/php/php-src/blob/master/ext/simplexml/simplexml.c
https://github.com/php/php-src/issues/14638
https://github.com/php/php-src/blob/master/ext/spl/spl_observer.c
https://github.com/php/php-src/issues/14639
https://github.com/php/php-src/blob/master/ext/standard/basic_functions.c
https://github.com/php/php-src/issues/14643
https://github.com/php/php-src/blob/master/ext/dom/php_dom.c
https://github.com/php/php-src/issues/14652
https://github.com/php/php-src/blob/master/ext/spl/spl_directory.c
https://github.com/php/php-src/issues/14687
https://github.com/php/php-src/blob/master/ext/libxml/libxml.c
https://github.com/php/php-src/issues/14698
https://github.com/php/php-src/issues/14709
https://github.com/php/php-src/blob/master/Zend/zend_execute.c
https://github.com/php/php-src/issues/14712
https://github.com/php/php-src/issues/14732
https://github.com/php/php-src/blob/master/Zend/zend_interfaces.c
https://github.com/php/php-src/issues/14741
https://github.com/php/php-src/blob/master/ext/standard/basic_functions.c
https://github.com/php/php-src/issues/14774
https://github.com/php/php-src/blob/master/ext/standard/array.c
https://github.com/php/php-src/issues/14775
https://github.com/php/php-src/blob/master/ext/standard/file.h
https://github.com/php/php-src/issues/14780
https://github.com/php/php-src/blob/master/main/output.c
https://github.com/php/php-src/issues/14808
https://github.com/php/php-src/blob/master/ext/dom/text.c
https://github.com/php/php-src/issues/15137
https://github.com/php/php-src/issues/15150
https://github.com/php/php-src/issues/15168
https://github.com/php/php-src/issues/15169
https://github.com/php/php-src/blob/master/ext/standard/url_scanner_ex.re
https://github.com/php/php-src/issues/15179
https://github.com/php/php-src/blob/master/main/output.c
https://github.com/php/php-src/issues/15181
https://github.com/php/php-src/issues/15187
https://github.com/php/php-src/blob/master/ext/dom/php_dom.c
https://github.com/php/php-src/issues/15192
https://github.com/php/php-src/blob/master/sapi/phpdbg/phpdbg_bp.c
https://github.com/php/php-src/issues/15208
https://github.com/php/php-src/blob/master/sapi/phpdbg/phpdbg.h
https://github.com/php/php-src/issues/15210
https://github.com/php/php-src/blob/master/sapi/phpdbg/phpdbg_info.c
https://github.com/php/php-src/issues/15210
https://github.com/php/php-src/blob/master/ext/dom/nodelist.c
https://github.com/php/php-src/issues/15143
https://github.com/php/php-src/blob/master/ext/pcre/php_pcre.c
https://github.com/php/php-src/issues/15205

Listing 3: Heap use-after-free in PCRE
<?php
$array = new ArrayIterator(..);
$regex = new RegexIterator($array, ’/Array/’);
foreach ($regex as $match) { }
$fusion = $regex;

/* AddressSanitizer: heap-use-after-free */

Listing 4: Heap overflow in SQLite extension
<?php
$dbfile = $GLOBALS[array_rand($GLOBALS)];
$db = new PDO(’sqlite:’.$dbfile, null, null, ..);

/* AddressSanitizer: heap-buffer-overflow on .. */

ferent modules in PHP. From the bugs in Table 1, FlowFusion
identified 8 instances of out-of-bounds errors (e.g., stack/heap
buffer overflows/underflows) and 3 use-after-free bugs. Ad-
ditionally, FlowFusion detected 18 null-pointer dereference
bugs, 1 use-of-uninitialized-variable bug, 2 expired-pointer
dereference bugs, and 6 access-of-uninitialized-pointer bugs,
all of which involve “bad” pointer access that can cause the
PHP interpreter to crash unexpectedly. We also detected sev-
eral non-crash bugs, including 3 memory leaks and 9 signed
integer overflows.

We found bugs affecting diverse functionalities within the
PHP interpreter, as illustrated in the locations of fixed bugs,
which are partly shown in Table 1. In total, patches gener-
ated by FlowFusion have impacted over 80 individual files,
including critical source files (e.g., zend_*.c, main.c). Specifi-
cally, the developers changed over 5k lines of code as a direct
response to our reports for security improvements in the offi-
cial PHP interpreter repository. The bugs found by FlowFu-
sion mostly have existed in the PHP interpreter from several
months to years. One use-after-free bug (the motivating ex-
ample shown in Listing 1) has existed for more than 20 years,
which developers described as “an ancient bug”.

Next, we highlight notable bugs found by FlowFusion, de-
scribing their root causes and security impacts based on our
analysis and developers’ feedback.

Bug analysis 1: heap use-after-free with PCRE. The
PHP Perl Compatible Regular Expressions (PCRE) module
facilitates pattern matching in PHP scripts using functions
like preg_match(). A heap use-after-free vulnerability, illus-
trated in Listing 3, arises due to the premature shutdown of
the PCRE module before all live objects are destroyed. Con-
sequently, when the Standard PHP Library (SPL) attempts
to clean up a regular expression object, it operates on freed
memory, leading to a use-after-free error.

FlowFusion discovered this bug by reassigning the regular
expression variable after completing all regular expression
operations, guided by dataflow fusion. The original query
included a series of standard regular expression statements
along with another script containing typical assignments. As
described in Section 4.2, FlowFusion randomly replaces vari-

Listing 5: Null pointer dereference in Zend compiler
<?php
register_shutdown_function(function() {

var_dump(eval("return 1+3;")); });
eval(<<<EVAL

function f(){ try { break; } finally {}} f();
EVAL);

/* UBSan: applying zero offset to null pointer */

Listing 6: Segmentation fault in JIT and OPcache
<?php
class Foo { public static function test() {

static $i = 0; var_dump(++$i); } }
Foo::test();

/* AddressSanitizer: SEGV on unknown address */

ables to create bridging connections for dataflow fusion, po-
tentially linking regular expression variables with subsequent
unrelated assignments, which then triggered this bug.

Bug analysis 2: heap overflow in PHP SQLite module.
SQLite is a widely used lightweight database system embed-
ded in the PHP interpreter as an in-memory storage solution.
Listing 4 illustrates a heap overflow error in the SQLite mod-
ule within the PHP interpreter. This bug-triggering program
first assigns a database variable as the SQLite file and then
creates a new SQLite object. However, because the buffer
size is not checked before memcmp, the allocated buffer ex-
ceeds the expected size in the heap, triggering an alert from
ASan. FlowFusion found this issue by interleaving unrelated
variables with SQLite statements.

Bug analysis 3: null pointer dereference in the Zend
compiler. The Zend engine contains a null pointer derefer-
ence vulnerability, as shown in Listing 5. This bug first causes
the compiler to terminate due to a fatal error, leaving its data
structures with stale values. During the next compilation, ele-
ments from the previous stack are incorrectly reused, leading
to a segmentation fault because wrong instructions are emitted
due to the stale data.

Bug analysis 4: segmentation fault in JIT and op-
cache. The PHP interpreter supports just-in-time compilation
through its JIT compiler and accelerates execution using op-
cache. Listing 6 presents a related issue that causes the Zend
compiler to crash. This issue was identified in a specific envi-
ronment with an opcache preload configuration. Developers
noted that “the issue arises because caller_info, callee_info,
and possibly call_map are allocated in the arena but are not
reset before being used by the next request.”

Bug analysis 5: segmentation fault in the session mod-
ule. The session module in the PHP interpreter preserves
data across visits by assigning each visitor a unique session
ID. This support allows data storage between requests using
the $_SESSION superglobal array. Listing 7 gives a segmen-
tation fault found in the session module. This fault arises

Listing 7: Segmentation fault in session extension
<?php
ob_start();
ini_set("session.serialize_handler", ..);
session_start();
$result1 = session_decode(’foo|s:3:"bar";’);
class Test extends DateTime {
public static function createFromFormat(
$format, $datetime, $timezone = null): Wrong{}

}
/* AddressSanitizer: SEGV on unknown address */

from changes made to the session decode process to prevent
writing incomplete sessions. According to the developers, “it
is illegal to return from a bailout because that does not re-
store the original bailout data”, the fix makes the termination
outside of the original data.

Discussion—false alarms. We observed three false alarms
during our experiment that are linked to the expected (Ep)
bugs in Table 1. There are two reasons for these false alarms:
(i) FlowFusion relies on sanitizers as the bug oracle. However,
it is known that sanitizers can have incorrect results [29]. One
of the expected bugs is explained by developers as “This is
an ASAN false positive . . . gives us a memory region that is
adjacent to the region where the fiber stack used to be, but
that still has the old shadow memory, and so we get a false
ASAN warning”. (ii) Another cause of false alarms is that the
sanitizer may abort before the overflow handler is triggered.
The PHP interpreter has a conservative stack limit, which can
sometimes be reached after the sanitizer issues an alert. This
results in false alarms for the remaining two expected bugs.

6.2 Improvement on Official Test Suite

One way to evaluate the effectiveness of FlowFusion is by
assessing how well it improves upon the official test suite in
the PHP interpreter and the naive approach of test concate-
nations. To achieve this, we manually analyzed the first 50
bugs identified by FlowFusion, as detailed in Table 1. Our
findings reveal that only 3 bugs can be reproduced using test
concatenation, and none can be reproduced using the official
test suite, highlighting the remarkable effectiveness of our
new approach.

Next, we performed a 24-hour fuzzing run, as recom-
mended in previous research [25], under three different se-
tups: (a) the official test suite, (b) concatenations of official
test cases, and (c) dataflow fusion. Note we merge other sec-
tions to ensure a fairer comparison when evaluating the test
concatenation. The enhanced effectiveness of FlowFusion is
demonstrated through two key outcomes from the 24-hour
fuzzing: (i) FlowFusion discovers more unique crash sites
that the official test suite and the test concatenation cannot
detect, and (ii) FlowFusion achieves higher code coverage
compared to the official test suite and the test concatenation.

More unique crash sites. FlowFusion is effective in dis-
covering unique crash sites in the PHP interpreter. We track
the number of crash sites of three approaches. Our evaluation
shows that FlowFusion can uncover over 20 unique crash sites
on average, whereas the official test cases detect none, and
test concatenation detects only 2. We expect the official test
cases to only rarely detect these crash sites, as they are tested
daily in automated continuous integration. Test concatenation
can reveal some crash sites by merging other non-program
sections, which creates different execution environments.

<?php
class Test { public string $prop {

set => strtoupper($value); } }
$test = new Test();
var_dump($test);
foreach ($test as $longVal) {}

/* AddressSanitizer: SEGV on unknown address */

The example test above illustrates where the memory error
found by FlowFusion is missed by both the official test suite
and test concatenation. This error occurs in the Zend allocator
and is triggered when a non-related class object from one seed
test is assigned to a foreach statement in another test. The
official test cases lacked a test to check such code semantics
while test concatenation fails to establish connections between
merged tests. Thus both approaches fail to find this bug.

Higher code coverage. Figure 2 illustrates that FlowFusion
outperforms both the official test suite and the concatenation
tests in terms of code coverage. Consistent with previous ob-
servations, the well-maintained official test cases consistently
achieve a high code coverage of 76% over 24 hours. This re-
sult, while impressive and surpassing existing grammar-based
fuzzers, remains static due to the limited size of the test suite.

Test concatenation, on the other hand, begins with lower
coverage than the official test suite, likely due to compatibility
issues or syntax errors introduced during the merging process
(e.g., unresolved namespace declarations), which cause some
tests to fail. However, the coverage for test concatenation grad-
ually increases over 24 hours, eventually surpassing that of the
official test suite. In general, test concatenation demonstrates
similar effectiveness to the official test suite.

FlowFusion, in contrast, achieves 80.4% with 4.3% higher
code coverage than the official test suite after 24 hours, with
coverage continuing to grow. FlowFusion explores a vast
space of generated test cases to uncover more memory errors.

60%

65%

70%

75%

80%

85%

2 4 6 8 10 12 14 16 18 20 22 24

80.4%80.3%80.3%80.3%80.2%80.2%80.1%80.0%79.8%79.7%79.4%78.9%
76.1%76.0%76.0%75.8%75.6%75.3%75.1%75.0%74.8%74.6%74.3%73.8%

Tests Concatenation FlowFusion

Table 1

Built-in Tests Tests Concatenation FlowFusion

2 76.0% 73.8% 78.9%
4 76.0% 74.3% 79.4%
6 76.0% 74.6% 79.7%
8 76.0% 74.8% 79.8%
10 76.0% 75.0% 80.0%
12 76.0% 75.1% 80.1%
14 76.0% 75.3% 80.2%
16 76.0% 75.6% 80.2%
18 76.0% 75.8% 80.3%
20 76.0% 76.0% 80.3%
22 76.0% 76.0% 80.3%
24 76.0% 76.1% 80.4%

Branch Coverage

52.0%

53.4%

54.8%

56.2%

57.6%

59.0%

2 4 6 8 10 12 14 16 18 20 22 24

58.7%58.6%58.6%58.6%58.5%58.5%58.4%58.3%58.1%
57.8%

57.4%
56.8%

55.4%55.3%55.3%55.2%55.1%55.0%54.8%54.7%54.6%54.4%54.2%
53.9%

53.2%53.2%53.2%53.2%53.2%53.2%53.2%53.2%53.2%53.2%53.2%53.2%

Built-in Tests Tests Concatenation Dataflow Fusion

Table 1-1

Built-in Tests Tests Concatenation Dataflow Fusion

2 53.2% 53.9% 56.8%
4 53.2% 54.2% 57.4%
6 53.2% 54.4% 57.8%
8 53.2% 54.6% 58.1%
10 53.2% 54.7% 58.3%
12 53.2% 54.8% 58.4%
14 53.2% 55.0% 58.5%
16 53.2% 55.1% 58.5%
18 53.2% 55.2% 58.6%
20 53.2% 55.3% 58.6%
22 53.2% 55.3% 58.6%
24 53.2% 55.4% 58.7%

(h)

line-cov total:313590
2 4 6 8 10 12 14 16 18 20 22 24

baseline
concatenation 67.30% 67.70% 68% 68.30% 68.40% 68.40% 68.50% 68.60% 68.60% 68.60% 68.7% 68.7%
flowfusion 69.40% 70% 70.30% 70.50% 70.60% 70.80% 70.90% 71% 71.10% 71.10% 71.20% 71.20%

func-cov total:14936
2 4 6 8 10 12 14 16 18 20 22 24

baseline
concatenation 79.90% 80.20% 80.40% 80.60% 80.60% 80.60% 80.70% 80.70%
flowfusion 80.80% 80.90% 81% 81.10% 81.10% 81.10% 81.20% 81.20% 81.20% 81.20% 81.30% 81.30%

line-cov total:313590
2 4 6 8 10 12 14 16 18 20 22 24

afl++
polyglot
flowfusion 69.40% 70% 70.30% 70.50% 70.60% 70.80% 70.90% 71% 71.10% 71.10% 71.20% 71.20%

func-cov total:14936
2 4 6 8 10 12 14 16 18 20 22 24

afl++
polyglot
flowfusion 80.80% 80.90% 81% 81.10% 81.10% 81.10% 81.20% 81.20% 81.20% 81.20% 81.30% 81.30%

Official Testcases (76.0%)

60%

86%

C
od

e
C

ov
er

ag
e

Figure 2: Code Coverage over Test Suite and Concatenation

This approach sacrifices some short-term efficiency for long-
term gains in code coverage. Notably, FlowFusion continues
to increase coverage beyond the 24-hour mark. For example,
FlowFusion reaches 82.1% code coverage after 7 days, while
the test suite’s coverage remains unchanged.

6.3 Comparison with Existing Approaches
We assess the effectiveness of FlowFusion in identifying mem-
ory errors in the PHP interpreter compared to existing method-
ologies. We included AFL++ [12] since it is often considered
the most effective general-purpose fuzzer. However, given
that the PHP interpreter expects highly structured input, we
also consider grammar-based fuzzing approaches, which we
would expect to generate more valid inputs. To the best of our
knowledge, no existing approach specifically focuses on PHP
interpreter fuzzing. We thus consider the following fuzzers
designed for general programming languages. Polyglot [8],
which incorporates grammar guidance and semantic valida-
tion, has uncovered over 30 memory errors in the PHP inter-
preter, making it the most effective existing approach. Among
other grammar-based approaches previously used to detect
memory errors in the PHP interpreter, Langfuzz [18] is not
publicly accessible. Nautilus [2] and Gramatron [48] found
3 and 4 memory errors in the PHP interpreter, respectively,
indicating their limited effectiveness. Therefore, we select
the most effective approach Polyglot as the state-of-the-art
evaluation baseline.

To conduct a fair comparison, we extract all PHP programs
from the official test suite and make them the seed inputs for
AFL++ and Polyglot. We perform a 24-hour fuzzing evalua-
tion by running AFL++, Polyglot, and FlowFusion under the
same environment (limited to 16 cores for each approach) to
compare their code coverage—the direct metric associated
with fuzzing effectiveness. We compile three copies of the
PHP interpreter using the same AFL-specific compiler11 and
compiler options (with gcov option and sanitizers).

Higher code coverage. Figure 3 shows the results of a
24-hour fuzzing experiment, where FlowFusion significantly
outperforms both AFL++ and Polyglot. Notably, while using
all official test cases as seed programs, AFL++ and Polyglot
achieve code coverages of around 60%, which falls short com-
pared to the 78% coverage achieved by the official test suite

Table 1

AFL++ Polyglot FlowFusion

2 53.3% 57.7% 79.9%
4 57.6% 57.7% 80.6%
6 58.0% 57.7% 80.8%
8 58.3% 57.7% 81.0%
10 58.4% 57.8% 81.1%
12 58.6% 57.8% 81.2%
14 58.8% 57.9% 81.3%
16 59.0% 57.9% 81.3%
18 59.2% 58.0% 81.4%
20 59.2% 58.0% 81.4%
22 59.3% 58.0% 81.5%
24 59.4% 58.0% 81.5%

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20 22 24

81.5%81.5%81.4%81.4%81.3%81.3%81.2%81.1%81.0%80.8%80.6%79.9%

58.0%58.0%58.0%58.0%57.9%57.9%57.8%57.8%57.7%57.7%57.7%57.7%

59.4%59.3%59.2%59.2%59.0%58.8%58.6%58.4%58.3%58.0%57.6%53.3%

AFL++ Polyglot FlowFusionOfficial Testcases (78.0%)

0%

100%

C
od

e
C

ov
er

ag
e

Figure 3: Coverage Comparison against AFL++ and Polyglot

11Coverage results differ from Section 6.2 as we change to AFL-clang compiler.

alone. This discrepancy arises due to two main reasons. First,
AFL++ and Polyglot are not PHP-specific fuzzers, and face
difficulties in fuzzing various sections of the test cases, such
as the --ini-- and --extensions-- sections, as illustrated in
Listing 2. Consequently, they often fail to dynamically meet
the additional module requirements of the generated programs
and to mutate the execution environments specified in these
configuration sections. This limitation results in inadequate
testing of core PHP interpreter features, such as JIT compi-
lation. Second, as the seed programs are already diverse in
their semantics and syntactically correct, the room for im-
provement using grammar guidance and semantic validation
in AFL++ and Polyglot is limited. In contrast, FlowFusion
enhances the official test suite by generating more complex
code semantics through dataflow fusion, thereby increasing
its semantic diversity.

More memory errors. We also counted the number of
memory errors detected by these three approaches over a
24-hour period. AFL++ and Polyglot detected 49 and 21
unique “crashes”, respectively, during this time (Polyglot’s
efficiency is reduced with semantic validation enabled,
resulting in fewer detected crashes). These “crashes” are not
the result of sanitizer aborts, rather they are all “Fatal errors”
from the PHP interpreter. However, such fatal errors can be
intentional rather than true bugs (e.g., if the test case has an
expected abort result, it is not an error). We found most “Fatal
errors” from AFL++ and Polyglot belong to expected aborts.
For example, in Figure 1, test B is expected to produce the
following failure: “Fatal error: Uncaught Error: Trying

to clone an uncloneable object of class Generator in

...”. Through manual verification, we confirmed that all
“Fatal errors” reported by AFL++ and Polyglot are unrelated
to memory errors. In contrast, FlowFusion identified 16
unique crash sites flagged by sanitizers, primarily related to
memory safety issues. FlowFusion can also detect all “Fatal
errors” from the PHP interpreter, however, this would result
in a high number of false positives which is undesirable.

6.4 Ablation Study

We examined the impact of key strategies used in our ap-
proach on overall effectiveness via an ablation assessment.
Specifically, we evaluated three strategies introduced in Sec-
tion 4.3: (i) test mutation, (ii) interface fuzzing, (iii) environ-
ment crossover, and the key method (iv) dataflow fusion. For
this assessment, we configured FlowFusion by individually
disabling each of these strategies, using a fully enabled ver-
sion of FlowFusion as the reference. To ensure consistency,
we compiled five identical copies of the PHP interpreter using
the same compiler and options, and evaluated these metrics
over 24 hours of fuzzing at the same time, with each configu-
ration limited to 16 parallel threads.

We use code coverage to assess their contribution to effec-
tiveness. We provide detailed coverage data for three main

Coverage - Core Modules

70%

75%

80%

85%

6 12 18 24

83.5%83.4%83.1%82.6%
83.4%83.2%82.9%82.4%

No Perturbation FlowFusion

Table 1

For ext No Perturbation FlowFusion No Interface FlowFusion Fixed Environment FlowFusion No Fusion FlowFusion

6 82.4% 82.6% 82.2% 82.6% 71.9% 82.6% 70.7% 82.6%

12 82.9% 83.1% 82.8% 83.1% 72.1% 83.1% 70.8% 83.1%

18 83.2% 83.4% 83.0% 83.4% 72.1% 83.4% 70.8% 83.4%

24 83.4% 83.5% 83.2% 83.5% 72.2% 83.5% 70.8% 83.5%

Table 1-1

For main No Perturbation FlowFusion No Interface FlowFusion Fixed Environment FlowFusion No Fusion FlowFusion

6 73.8% 74.4% 74.0% 74.4% 74.0% 74.4% 72.5% 74.4%

12 74.3% 74.9% 74.3% 74.9% 74.3% 74.9% 72.5% 74.9%

18 74.5% 75.2% 74.4% 75.2% 74.5% 75.2% 72.5% 75.2%

24 74.8% 75.4% 74.4% 75.4% 74.6% 75.4% 72.5% 75.4%

Table 1-1-1

For sapi No Perturbation FlowFusion No Interface FlowFusion Fixed Environment FlowFusion No Fusion FlowFusion

6 42.3% 44.4% 43.7% 44.4% 44.8% 44.4% 39.3% 44.4%

12 42.9% 44.6% 44.4% 44.6% 45.1% 44.6% 39.3% 44.6%

18 43.0% 44.8% 44.6% 44.8% 45.3% 44.8% 39.3% 44.8%

24 43.0% 45.1% 44.7% 45.1% 45.4% 45.1% 39.3% 45.1%

Table 1-1-2

Overall No Perturbation FlowFusion No Interface FlowFusion Fixed Environment FlowFusion No Fusion FlowFusion

6 79.3% 79.7% 79.3% 79.7% 73.9% 79.7% 72.1% 79.7%

12 79.7% 80.1% 79.8% 80.1% 74.1% 80.1% 72.2% 80.1%

18 79.9% 80.3% 80.0% 80.3% 74.2% 80.3% 72.2% 80.3%

24 80.0% 80.4% 80.2% 80.4% 74.3% 80.4% 72.2% 80.4%

Table 1-1-3

For Zend No Perturbation FlowFusion No Interface FlowFusion Fixed Environment FlowFusion No Fusion FlowFusion

6 81.0% 81.3% 81.1% 81.3% 80.1% 81.3% 78.1% 81.3%

12 81.2% 81.5% 81.4% 81.5% 80.4% 81.5% 78.2% 81.5%

18 81.3% 81.7% 81.5% 81.7% 80.6% 81.7% 78.2% 81.7%

24 81.4% 81.8% 81.6% 81.8% 80.7% 81.8% 78.2% 81.8%

Coverage - Main Functions

70%

75%

80%

85%

6 12 18 24

75.4%75.2%74.9%74.4%
74.8%74.5%74.3%73.8%

No Perturbation FlowFusion

Coverage(sapi)

41.0%

42.5%

44.0%

45.5%

6 12 18 24

45.1%44.8%44.6%44.4%

43.0%43.0%42.9%
42.3%

No Perturbation
FlowFusion

Overall Coverage

70%

75%

80%

85%

6 12 18 24

80.4%80.3%80.1%79.7%
80.0%79.9%79.7%79.3%

No Perturbation FlowFusion

Coverage - Zend Engine

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%
81.4%81.3%81.2%81.0%

No Perturbation FlowFusion

70%

75%

80%

85%

6 12 18 24

83.5%83.4%83.1%82.6%
83.2%83.0%82.8%82.2%

No Interface FlowFusion

70%

75%

80%

85%

6 12 18 24

75.4%75.2%74.9%74.4%
74.4%74.4%74.3%74.0%

No Interface FlowFusion

42.0%

43.2%

44.3%

45.5%

6 12 18 24

45.1%
44.8%44.6%44.4%

44.7%44.6%44.4%

43.7%

No Interface FlowFusion

70%

75%

80%

85%

6 12 18 24

80.4%80.3%80.1%79.7%
80.2%80.0%79.8%79.3%

No Interface FlowFusion

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%
81.6%81.5%81.4%81.1%

No Interface FlowFusion

70%

75%

80%

85%

6 12 18 24

83.5%83.4%83.1%82.6%

72.2%72.1%72.1%71.9%

Fixed Environment FlowFusion

70%

75%

80%

85%

6 12 18 24

75.4%75.2%74.9%74.4%
74.6%74.5%74.3%74.0%

Fixed Environment FlowFusion

43.0%

44.0%

45.0%

46.0%

6 12 18 24

45.1%
44.8%44.6%44.4%

45.4%45.3%45.1%
44.8%

Fixed Environment
FlowFusion

70%

75%

80%

85%

6 12 18 24

80.4%80.3%80.1%79.7%

74.3%74.2%74.1%73.9%

Fixed Environment FlowFusion

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%

80.7%80.6%80.4%80.1%

Fixed Environment FlowFusion

70%

75%

80%

85%

6 12 18 24

83.5%83.4%83.1%82.6%

70.8%70.8%70.8%70.7%

No Fusion FlowFusion

70%

75%

80%

85%

6 12 18 24

75.4%75.2%74.9%74.4%
72.5%72.5%72.5%72.5%

No Fusion FlowFusion

38.0%

40.7%

43.3%

46.0%

6 12 18 24

45.1%44.8%44.6%44.4%

39.3%39.3%39.3%39.3%

No Fusion FlowFusion

70%

75%

80%

85%

6 12 18 24

80.4%80.3%80.1%79.7%

72.2%72.2%72.2%72.1%

No Fusion FlowFusion

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%

78.2%78.2%78.2%78.1%

No Fusion FlowFusion

(h) (h) (h) (h)

(h) (h) (h) (h)

(h) (h) (h) (h)

(h) (h) (h) (h)

Coverage - Core Modules

6 12 18 24

83.5%83.4%83.1%82.6%
83.4%83.2%82.9%82.4%

Coverage - Main Functions

6 12 18 24

75.4%75.2%74.9%74.4%
74.8%74.5%74.3%73.8%

Overall Coverage

6 12 18 24

80.4%80.3%80.1%79.7%
80.0%79.9%79.7%79.3%

Coverage - Zend Engine

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%
81.4%81.3%81.2%81.0%No Mutation

FlowFusion

6 12 18 24

83.5%83.4%83.1%82.6%
83.2%83.0%82.8%82.2%

6 12 18 24

75.4%75.2%74.9%74.4%
74.4%74.4%74.3%74.0%

6 12 18 24

80.4%80.3%80.1%79.7%
80.2%80.0%79.8%79.3%

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%
81.6%81.5%81.4%81.1%No APIFuzzing

FlowFusion

6 12 18 24

83.5%83.4%83.1%82.6%

72.2%72.1%72.1%71.9%

6 12 18 24

75.4%75.2%74.9%74.4%
74.6%74.5%74.3%74.0%

6 12 18 24

80.4%80.3%80.1%79.7%

74.3%74.2%74.1%73.9%

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%

80.7%80.6%80.4%80.1%Fixed Environment
FlowFusion

6 12 18 24

83.5%83.4%83.1%82.6%

70.8%70.8%70.8%70.7%

6 12 18 24

75.4%75.2%74.9%74.4%
72.5%72.5%72.5%72.5%

6 12 18 24

80.4%80.3%80.1%79.7%

72.2%72.2%72.2%72.1%

70%

75%

80%

85%

6 12 18 24

81.8%81.7%81.5%81.3%

78.2%78.2%78.2%78.1%No Fusion
FlowFusion

Figure 4: Ablation Study of FlowFusion

components of the PHP interpreter introduced in Section 2: (i)
Zend engine, (ii) core modules, and (iii) main functions, along
with (iv) the overall coverage. Figure 4 presents the evaluation
results with coverage between 70% to 85%. Focusing first on
the overall coverage column, we rank the contributions to cov-
erage as follows: dataflow fusion contributes the most with
8% decrease, followed by environment crossover with 6%
decrease, and finally, test mutation and interface fuzzing with
small 0.2% to 0.4% decreases. Notably, two significant de-
creases in code coverage occur with the fixed environment and
the absence of dataflow fusion. These strategies are directly
related to test fusion—one involving the fusion of program
sections and the other merging the rest sections.

We then analyze the three components of the PHP inter-
preter in relation to overall code coverage. Test mutations
result in minor increases across all components, with the Zend
engine and main functions showing slightly greater gains than
the core modules. Interface fuzzing noticeably boosts cover-
age in the main functions. Environment crossover leads to a
significantly larger increase in the code modules compared to
other components. Notably, dataflow fusion drives substantial
growth across all components, underscoring its key role in
enhancing coverage.

7 Discussion

We present several limitations of FlowFusion and discuss
possible solutions or future works.

Efficiency. The efficiency of FlowFusion has not been
optimized for exploring larger search spaces. We intention-
ally allow semantic violations when fusing two test cases
(e.g., type mismatches or undefined variables). We believe
it offers an additional opportunity to uncover more memory
errors, some of which developers have remarked as “a bit

‘nonsensical’ but should not cause a crash” type bug. Intro-
ducing semantic validation could be a potential optimization
for FlowFusion. This would involve more extensive static
and dynamic analysis to guide more accurate test fusion, ef-
fectively narrowing the search space, and thereby improving
performance but potentially missing some edge cases.

Feedback. We initially considered incorporating coverage
feedback into our approach but ultimately decided against
it due to the substantial overhead it introduced. The basic
concept was to evaluate each fused test case and add it to the
test corpus if it covered more lines of the PHP interpreter. This
would involve monitoring code coverage after every execution
of fused test cases, which resulted in excessive overhead. We
leave this optimization for future work.

Bug oracle. We use sanitizers as our primary bug oracle;
however, additional bug oracles can be incorporated into our
approach to detect further bugs like logic bugs.

Scalability to other programming languages. The high-
level insight of FlowFusion (dataflow interleaving) and other
strategies (test mutation, interface fuzzing, and environment
crossover) are extensible to other programming languages

like C/C++ or JavaScript. We have initial work extending
FlowFusion to JavaScript, and while it is early, it has already
found JavaScript bugs.

Dependency on the test cases. Relying on test cases bene-
fits FlowFusion by automatically reflecting any updates made
by developers, but it also constrains FlowFusion’s scalability—
requiring a well-maintained test suite of high quality and
ample coverage.

8 Related Work

In this section, we examine related work on PHP application
security, historical information reuse, and compiler/interpreter
testing and fuzzing to underscore the importance of analyzing
the PHP interpreter and to establish the foundation of our
approach, FlowFusion.

PHP application security. As one of the most popu-
lar languages for web deployments, the security problems
in PHP-related applications have recently attracted increas-
ing attention. To protect these applications, existing solu-
tions focus on attack surface mitigation [3, 4, 19], bug de-
tection [1, 28, 32, 34, 38], and defense mechanism enhance-
ment [7, 31, 40]. For example, Minimalist [19] and Animat-
eDead [3] use debloating strategies to reduce the code size of
applications, such as minimizing critical API calls, thereby in-
creasing the complexity and workload for attackers. WHIP [1]
enables static application security testing (SAST) tools to col-
laborate by sharing information, which helps to trigger more
security alerts. TChecker [32] introduces a context-sensitive
inter-procedural static taint analysis tool to detect taint-style
vulnerabilities in PHP applications. Additionally, Saphire [7]
applies the principle of least privilege (PoLP) to PHP applica-
tions and proposes a novel, generic approach for automatically
deriving system-call policies for individual interpreted pro-
grams. BrowserShield [40] utilizes a lightweight middlebox
to prevent the exploitation of browser vulnerabilities. Flow-
Fusion is orthogonal to these works, aiming to detect mem-
ory errors that provide an additional low-level attack surface
alongside common application-level bugs.

Reusing historic bugs or tests. Historical bug reports and
test cases offer valuable insights into a system’s internal state
and potentially vulnerable points. These insights are widely
used to construct new, meaningful inputs or seeds that help
uncover additional vulnerabilities. For example, Oliinyk et
al. [35] and Zhao et al. [58] analyze previous crash or bug
reports to facilitate new seed generation, identifying new bugs
in BusyBox and the Java Virtual Machine (JVM), respectively.
Alternatively, some approaches [26, 27, 49, 50, 59] leverage
existing test cases as guidance to explore program states and
discover new vulnerabilities. For instance, SQuaLity [49]
executes test suites across different Database Management
Systems (DBMSs) to uncover new, previously unknown bugs.

In the context of C/C++ compiler testing, the Equivalence
Modulo Inputs (EMI) approach [26, 27, 50] mutates exist-
ing test programs to create semantically equivalent variants,
aiding in bug discovery. Additionally, YinYang [54] goes a
step further by generating new test inputs through semantic
fusion, combining two existing formulas into a new one to
detect soundness bugs in Satisfiability Modulo Theory (SMT)
solvers. Guided by this, FlowFusion explores the potential of
fusing high-quality test cases to discover PHP memory errors,
enhancing the security of the PHP interpreter.

Compiler/Interpreter testing and fuzzing. Existing so-
lutions have concentrated on fuzzing or testing popular com-
pilers and interpreters, such as those for C/C++ [10, 30, 55],
Rust [47, 51], and JavaScript (JS) [6, 15, 53], to mitigate po-
tential cascading security issues. For instance, GrayC [10] de-
sign a greybox, coverage-directed, mutation-based approach
to fuzz C compilers and code analyzers using a new set of
mutations to target common C constructs. Creal [30] boosts
C/C++ compiler testing by fusing real-world code with seed
programs. RustSmith [47] executes differential testing be-
tween Rust compilers or across optimization levels to identify
potential bugs. Comfort [56] leverages the deep learning-
based language model to automatically generate JS test code
to detect bugs in JS engines. Fuzzilli [15] presents the design
and implementation of an intermediate representation (IR)
aimed at uncovering vulnerabilities in JIT compilers. Fuz-
zJIT [53] focuses on identifying JIT compiler bugs by trig-
gering the JIT compilation process and capturing execution
inconsistencies. CodeAlchemist [16] leverages syntax-aware
assembly by merging code bricks from the seed to generate
new test cases for fuzzing JavaScript engines. LangFuzz [18],
NAUTILUS [2], Gramatron [48], and PolyGlot [8] are ex-
isting fuzzing approaches that have found memory errors in
the PHP interpreter. Focusing solely on grammar may over-
look the code semantics of programs, thereby limiting their
bug-discovery capabilities. To address this, we developed
FlowFusion to detect memory errors in the PHP interpreter
by fusing dataflow from high-quality test cases, generating
new and more complex code semantics.

9 Conclusion

In this paper, we introduced FlowFusion, the first automated
fuzzing framework specifically designed to detect memory er-
rors in the PHP interpreter through dataflow fusion and other
innovative techniques. Our approach merges test cases by link-
ing their dataflows, creating fused tests capable of uncover-
ing previously undetected bugs. Comprehensive experiments
demonstrated FlowFusion’s effectiveness, revealing 158 bugs,
with 125 successfully fixed and 11 confirmed, outperforming
existing methods. We believe that continued fuzzing with
FlowFusion will discover even more PHP bugs.

FlowFusion demonstrates its potential as a practical tool

for improving the security and robustness of the PHP inter-
preter. Moreover, the principles behind FlowFusion ’s de-
sign—especially the dataflow fusion technique detailed in
Algorithm 1—are not limited to PHP. We believe there is
broader applicability to other programming languages, where
FlowFusion could be effectively used to merge test cases
based on dataflow relationships, making FlowFusion a valu-
able contribution to the field of language interpreter fuzzing.

Ethics Statement

In conducting this research, we have carefully considered the
ethical implications at every stage, from design through pub-
lication. We avoided live experimentation on systems with-
out proper authorization and ensured that any vulnerabilities
identified during the research were responsibly disclosed to
relevant parties. By following these ethical practices, we aim
to minimize harm and ensure that our research contributes
positively to the field. These considerations not only align
with ethical standards but also promote responsible innovation
in the computer security and privacy domains.

Open Science Statement

We are committed to openly sharing all research artifacts
associated with this work. Our approach, FlowFusion, is avail-
able at https://github.com/php/flowfusion under an
open-source license and archived paper artifact at https://
zenodo.org/records/14642350. Our commitment to open
science aligns with the broader initiative to foster transparency
and collaboration within the research community.

Acknowledgements

We appreciate the PHP developers’ responsiveness in address-
ing our bug reports, providing valuable feedback, and cooper-
ating with us to open source FlowFusion. This research is sup-
ported by the National Research Foundation, Singapore, and
Cyber Security Agency of Singapore under its National Cyber-
security R&D Programme (Fuzz Testing <NRF-NCR25-Fuzz-
0001>) and by MOE grant A-8001544-00-00. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore and Cyber
Security Agency of Singapore.

References

[1] AL-KASSAR, F., COMPAGNA, L., AND BALZAROTTI, D. WHIP:
Improving static vulnerability detection in web application by forcing
tools to collaborate. In 32nd USENIX Security Symposium (USENIX
Security 23) (2023), pp. 6079–6096.

[2] ASCHERMANN, C., FRASSETTO, T., HOLZ, T., JAUERNIG, P.,
SADEGHI, A.-R., AND TEUCHERT, D. Nautilus: Fishing for deep
bugs with grammars. In NDSS (2019).

[3] AZAD, B. A., JAHANSHAHI, R., TSOUKALADELIS, C., EGELE, M.,
AND NIKIFORAKIS, N. AnimateDead: Debloating web applications us-
ing concolic execution. In 32nd USENIX Security Symposium (USENIX
Security 23) (2023), pp. 5575–5591.

[4] AZAD, B. A., LAPERDRIX, P., AND NIKIFORAKIS, N. Less is
more: Quantifying the security benefits of debloating web applica-
tions. In 28th USENIX Security Symposium (USENIX Security 19)
(2019), pp. 1697–1714.

[5] BA, J., DUCK, G. J., AND ROYCHOUDHURY, A. Efficient greybox
fuzzing to detect memory errors. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (2022),
pp. 1–12.

[6] BERNHARD, L., SCHARNOWSKI, T., SCHLOEGEL, M., BLAZYTKO,
T., AND HOLZ, T. Jit-picking: Differential fuzzing of javascript engines.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (2022), pp. 351–364.

[7] BULEKOV, A., JAHANSHAHI, R., AND EGELE, M. Saphire: Sand-
boxing PHP applications with tailored system call allowlists. In 30th
USENIX Security Symposium (USENIX Security 21) (2021), pp. 2881–
2898.

[8] CHEN, Y., ZHONG, R., HU, H., ZHANG, H., YANG, Y., WU, D., AND
LEE, W. One engine to fuzz’em all: Generic language processor testing
with semantic validation. In 2021 IEEE Symposium on Security and
Privacy (SP) (2021), IEEE, pp. 642–658.

[9] CVEDETAILS.COM. Top 50 Vendors By Total Number Of
"Distinct" Vulnerabilities — cvedetails.com. https://
www.cvedetails.com/top-50-vendors.php?year=0., 2024. [Ac-
cessed 31-08-2024].

[10] EVEN-MENDOZA, K., SHARMA, A., DONALDSON, A. F., AND
CADAR, C. Grayc: Greybox fuzzing of compilers and analysers for c.
In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (2023), pp. 1219–1231.

[11] FERNANDEZ, J. M. A deep dive into disable_functions bypass and
PHP exploitation. https://www.tarlogic.com/blog/disable_
functions-bypasses-php-exploitation/, 2020. [Accessed 23-
08-2024].

[12] FIORALDI, A., MAIER, D., EISSFELDT, H., AND HEUSE, M. AFL++:
Combining incremental steps of fuzzing research. In 14th USENIX
Workshop on Offensive Technologies (WOOT 20) (2020).

[13] GCOVR. https://gcovr.com/, 2024.

[14] GOLOFIT, P. https://accesto.com/blog/
is-php-still-relevant-in-2024/.

[15] GROSS, S., KOCH, S., BERNHARD, L., HOLZ, T., AND JOHNS, M.
Fuzzilli: Fuzzing for javascript jit compiler vulnerabilities. In NDSS
(2023).

[16] HAN, H., OH, D., AND CHA, S. K. CodeAlchemist: Semantics-aware
code generation to find vulnerabilities in javascript engines. In NDSS
(2019).

[17] HAN, W., JOE, B., LEE, B., SONG, C., AND SHIN, I. Enhancing
memory error detection for large-scale applications and fuzz testing.
In Network and Distributed Systems Security (NDSS) Symposium 2018
(2018).

[18] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security 12)
(2012), pp. 445–458.

[19] JAHANSHAHI, R., AZAD, B. A., NIKIFORAKIS, N., AND EGELE,
M. Minimalist: Semi-automated debloating of PHP web applications
through static analysis. In 32nd USENIX Security Symposium (USENIX
Security 23) (2023), pp. 5557–5573.

https://github.com/php/flowfusion
https://zenodo.org/records/14642350
https://zenodo.org/records/14642350
https://www.cvedetails.com/top-50-vendors.php?year=0.
https://www.cvedetails.com/top-50-vendors.php?year=0.
https://www.tarlogic.com/blog/disable_functions-bypasses-php-exploitation/
https://www.tarlogic.com/blog/disable_functions-bypasses-php-exploitation/
https://gcovr.com/
https://accesto.com/blog/is-php-still-relevant-in-2024/
https://accesto.com/blog/is-php-still-relevant-in-2024/

[20] JIANG, Y., YAP, R. H., LIANG, Z., AND ROSIER, H. RecIPE: Re-
visiting the evaluation of memory error defenses. In Proceedings of
the 2022 ACM on Asia Conference on Computer and Communications
Security (2022), pp. 574–588.

[21] KAMM, M., RIGGER, M., ZHANG, C., AND SU, Z. Testing graph
database engines via query partitioning. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis (New York, NY, USA, 2023), ISSTA 2023, Association for
Computing Machinery, p. 140–149.

[22] KHEDKER, U., SANYAL, A., AND SATHE, B. Data flow analysis:
theory and practice. CRC Press, 2017.

[23] KINSTA. https://kinsta.com/php-market-share/.

[24] KIRAN, H. https://techjury.net/blog/
php-usage-statistics/.

[25] KLEES, G., RUEF, A., COOPER, B., WEI, S., AND HICKS, M. Evaluat-
ing fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (New York, NY, USA,
2018), CCS ’18, Association for Computing Machinery, p. 2123–2138.

[26] LE, V., AFSHARI, M., AND SU, Z. Compiler validation via equivalence
modulo inputs. Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation 49, 6 (jun 2014),
216–226.

[27] LE, V., SUN, C., AND SU, Z. Finding deep compiler bugs via guided
stochastic program mutation. Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications 50, 10 (2015), 386–399.

[28] LI, P., AND MENG, W. Lchecker: Detecting loose comparison bugs
in php. In Proceedings of the Web Conference 2021 (2021), pp. 2721–
2732.

[29] LI, S., AND SU, Z. Ubfuzz: finding bugs in sanitizer implementations.
In Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 1 (2024), pp. 435–449.

[30] LI, S., THEODORIDIS, T., AND SU, Z. Boosting compiler testing by
injecting real-world code. Proceedings of the ACM on Programming
Languages 8, PLDI (2024), 223–245.

[31] LI, Z., TANG, Y., CAO, Y., RASTOGI, V., CHEN, Y., LIU, B., AND
SBISA, C. Webshield: Enabling various web defense techniques with-
out client side modifications. In NDSS (2011).

[32] LUO, C., LI, P., AND MENG, W. Tchecker: Precise static inter-
procedural analysis for detecting taint-style vulnerabilities in php ap-
plications. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (2022), pp. 2175–2188.

[33] MITRE. CWE - 2023 CWE Top 10 KEV Weaknesses —
cwe.mitre.org. https://cwe.mitre.org/top25/archive/2023/
2023_kev_list.html, 2023. [Accessed 24-08-2024].

[34] NEEF, S., KLEISSNER, L., AND SEIFERT, J.-P. What all the phuzz
is about: A coverage-guided fuzzer for finding vulnerabilities in php
web applications. In Proceedings of the 19th ACM Asia Conference on
Computer and Communications Security (2024), pp. 1523–1538.

[35] OLIINYK, Y., SCOTT, M., TSANG, R., FANG, C., HOMAYOUN, H.,
ET AL. Fuzzing busybox: Leveraging llm and crash reuse for embedded
bug unearthing. arXiv preprint arXiv:2403.03897 (2024).

[36] PHP. https://github.com/php/php-src/security/
advisories/GHSA-h35g-vwh6-m678, 2024.

[37] PHP. https://github.com/php/php-src/security/
advisories/GHSA-jqcx-ccgc-xwhv, 2024.

[38] RABHERU, R., HANIF, H., AND MAFFEIS, S. Deeptective: Detection
of php vulnerabilities using hybrid graph neural networks. In Proceed-
ings of the 36th annual ACM symposium on applied computing (2021),
pp. 1687–1690.

[39] REGEHR, J., CHEN, Y., CUOQ, P., EIDE, E., ELLISON, C., AND
YANG, X. Test-case reduction for c compiler bugs. In Proceedings
of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation (2012), pp. 335–346.

[40] REIS, C., DUNAGAN, J., WANG, H. J., DUBROVSKY, O., AND ES-
MEIR, S. Browsershield: Vulnerability-driven filtering of dynamic
html. ACM Transactions on the Web (TWEB) 1, 3 (2007), 11–es.

[41] RIGGER, M., AND SU, Z. Finding bugs in database systems via query
partitioning. Proc. ACM Program. Lang. 4, OOPSLA (nov 2020).

[42] RIGGER, M., AND SU, Z. Testing database engines via pivoted query
synthesis. In Proceedings of the 14th USENIX Conference on Operating
Systems Design and Implementation (USA, 2020), OSDI’20, USENIX
Association.

[43] RYAT. Use after free vulnerability in unserialize. https://hackerone.
com/reports/159948, 2016. [Accessed 23-08-2024].

[44] SECURITYSCORECARD. https://www.cvedetails.com/product/
128/PHP-PHP.html, 2024.

[45] SEREBRYANY, K. OSS-Fuzz-google’s continuous fuzzing service for
open source software.

[46] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND VYUKOV,
D. AddressSanitizer: A fast address sanity checker. In 2012 USENIX
annual technical conference (USENIX ATC 12) (2012), pp. 309–318.

[47] SHARMA, M., YU, P., AND DONALDSON, A. F. Rustsmith: Random
differential compiler testing for rust. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis
(2023), pp. 1483–1486.

[48] SRIVASTAVA, P., AND PAYER, M. Gramatron: Effective grammar-
aware fuzzing. In Proceedings of the 30th acm sigsoft international
symposium on software testing and analysis (2021), pp. 244–256.

[49] SU, Y., AND RIGGER, M. Understanding and reusing test suites across
database systems. In Preprint of SIGMOD 2025, International Confer-
ence on Management of Data (2025).

[50] SUN, C., LE, V., AND SU, Z. Finding compiler bugs via live code
mutation. In Proceedings of the 2016 ACM SIGPLAN international
conference on object-oriented programming, systems, languages, and
applications (2016), pp. 849–863.

[51] TUONG, F., OMIDVAR TEHRANI, M., GABOARDI, M., AND KO, S. Y.
Symrustc: A hybrid fuzzer for rust. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis
(2023), pp. 1515–1518.

[52] W3TECHS. https://w3techs.com/technologies/details/
pl-php.

[53] WANG, J., ZHANG, Z., LIU, S., DU, X., AND CHEN, J.
FuzzJIT:Oracle-Enhanced fuzzing for JavaScript engine JIT
compiler. In 32nd USENIX Security Symposium (USENIX Security 23)
(2023), pp. 1865–1882.

[54] WINTERER, D., ZHANG, C., AND SU, Z. Validating smt solvers via
semantic fusion. In Proceedings of the 41st ACM SIGPLAN Conference
on programming language design and implementation (2020), pp. 718–
730.

[55] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and un-
derstanding bugs in c compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (New York, NY, USA, 2011), PLDI ’11, Association for
Computing Machinery, p. 283–294.

[56] YE, G., TANG, Z., TAN, S. H., HUANG, S., FANG, D., SUN, X.,
BIAN, L., WANG, H., AND WANG, Z. Automated conformance testing
for javascript engines via deep compiler fuzzing. In Proceedings of
the 42nd ACM SIGPLAN international conference on programming
language design and implementation (2021), pp. 435–450.

https://kinsta.com/php-market-share/
https://techjury.net/blog/php-usage-statistics/
https://techjury.net/blog/php-usage-statistics/
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://github.com/php/php-src/security/advisories/GHSA-h35g-vwh6-m678
https://github.com/php/php-src/security/advisories/GHSA-h35g-vwh6-m678
https://github.com/php/php-src/security/advisories/GHSA-jqcx-ccgc-xwhv
https://github.com/php/php-src/security/advisories/GHSA-jqcx-ccgc-xwhv
https://hackerone.com/reports/159948
https://hackerone.com/reports/159948
https://www.cvedetails.com/product/128/PHP-PHP.html
https://www.cvedetails.com/product/128/PHP-PHP.html
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php

[57] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineering
28, 2 (2002), 183–200.

[58] ZHAO, Y., WANG, Z., CHEN, J., LIU, M., WU, M., ZHANG, Y., AND
ZHANG, L. History-driven test program synthesis for jvm testing. In

Proceedings of the 44th International Conference on Software Engi-
neering (2022), pp. 1133–1144.

[59] ZHONG, H. Enriching compiler testing with real program from bug
report. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (2022), pp. 1–12.

	Introduction
	Background
	Threat Model
	Approach
	Approach Overview
	Dataflow Fusion
	Further Strategies

	Implementation
	Evaluation
	Discovering Unknown Memory Errors
	Improvement on Official Test Suite
	Comparison with Existing Approaches
	Ablation Study

	Discussion
	Related Work
	Conclusion

