
Extensible Virtual Call Integrity

Yuancheng Jiang1(B), Gregory J. Duck1, Roland H. C. Yap1, Zhenkai Liang1,
and Pinghai Yuan2

1 National University of Singapore, Singapore, Singapore
{yuancheng,gregory,ryap,liangzk}@comp.nus.edu.sg

2 Anhui Normal University, Wuhu, China
yph@ahnu.edu.cn

Abstract. Virtual calls in C++ are known to be vulnerable to control-
flow attacks, and Virtual Call Control Flow Integrity (VCFI) is a pro-
posed defense. However, most existing VCFI defenses are incompati-
ble with real-world C++ software that need extensibility in the form
of dynamic loading, foreign language interface, etc. In this paper, we
propose a novel and extensible VCFI mechanism—namely eVCFI—that
is flexible enough to handle such software requirements. eVCFI uses
Approximate Membership Query (AQM) filters, recasting VCFI as an
efficient set membership query, giving an O(1) time VCFI check that can
be implemented in only a few instructions, all while supporting exten-
sibility and multi-threading. We compare eVCFI with existing VCFIs,
showing that we can achieve more accurate policies or extensibility com-
pared with other VCFI mechanisms designed for efficiency or modular-
ity. Evaluation of eVCFI shows small 1.3% overhead with SPEC 2006.
Furthermore, we evaluate eVCFI against the FireFox web browser: an
example of large/complex C++ software that uses both dynamic loading
and a foreign language interface (Rust). We show that eVCFI can pro-
tect Firefox with a small overhead of 1.15%. We believe that eVCFI is
the first VCFI defense able to protect complex software like Firefox.

1 Introduction

C++ is a popular programming language used to implement large complex soft-
ware systems such as web browsers [8]. However, C++ is also vulnerable to attacks
such as control flow hijacking, where the attacker exploits a memory/type error
to divert control to an attacker’s chosen function/gadget, possibly granting arbi-
trary code execution. A common control flow hijack attack in C++ programs is
to exploit dynamic dispatch. Modern C++ Application Binary Interfaces (ABIs),
e.g., Itanium C++ ABI [1] (used by x86 64), implement dynamic dispatch using
Virtual Function Pointer Tables (vtables) and virtual member functions. During
a virtual call to a virtual member function, the corresponding function pointer
in the vtable is called. However, this approach is vulnerable to attack, since
pointer to the vtable (a.k.a., the vptr) is stored within the object itself, mak-
ing it a potential target for type/memory errors. C++-specific variants of these
attacks have also been developed, such as Counterfeit Object-oriented Program-
ming (COOP) [18].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 723–739, 2022.
https://doi.org/10.1007/978-3-031-17143-7_35

724 Y. Jiang et al.

Virtual Call Control Flow Integrity (VCFI) is a proposed defense against vir-
tual call control flow attacks [5,13,20]. VCFI defenses must efficiently validate a
given object’s vptr against the set of possible valid values, as determined by the
full class hierarchy specified by the program and the C++ language semantics.
A state-of-the-art VCFI defense is shipped with the LLVM/clang++ compiler
(cfi-vcall in [14]), which uses Link-time Optimization (LTO) to extract the
full class hierarchy at compile time. However, in addition to security and perfor-
mance, extensibility is another critical design dimension for VCFI. For example,
it is common for real-world software to be modular, i.e., interoperating with
other modules through dynamic linking/loading. Furthermore, some software
includes components with special interfaces, such as foreign language interfaces
or Component Object Models (COM). Supporting such ad hoc extensions, even
with manual intervention, necessitates a VCFI design that can handle “dynamic”
class hierarchies—i.e., where the class hierarchy can be extended at runtime, or
on-the-fly. We call this class extensibility, or simply extensibility.

The multithreaded Firefox browser exemplifies complex software architected
with extensibility. Firefox uses dynamic loading, XPCOM (similar to COM),
and foreign language interfaces, including C++ and Rust components interacting
with each other. Such extensibility is incompatible with many existing VCFI
defenses. For example, in Firefox, a C++ virtual call to an object implemented
in Rust will trigger a VCFI violation, even though this is a benign (intentional)
usage and not an attack. Our aim is to design an efficient VCFI defense that is
compatible with extensibility requirements, expanding the applicability of VCFI
to more C++ software.

In this paper, we identify the requirements for extensible and efficient vir-
tual call integrity in C++ programs. We introduce a new VCFI defense, eVCFI,
which is designed to support extensible C++ software. To do so, we first cast the
problem as an efficient set-membership question on dynamic sets, i.e., is a vptr a
member of the “allow-set” of the corresponding class? There are many algorith-
mic tradeoffs with efficient set-membership, with different pros and cons. In this
paper, we argue that Approximate Membership Query filters (AQM), such as
Bloom filters [3], meet the design requirements of extensible VCFI. Specifically,
we show that Bloom filters are efficient, i.e., O(1) check that only needs a few
instructions, regardless of the class hierarchy size or the number of modules. Fur-
thermore, we show Bloom filters are extensible in that new entries can be added
at runtime, without the need for thread locking/synchronization. In effect, our
approach supports extensibility using a single underlying mechanism (Bloom
filters), without fast/slow path logic. Finally, as our approach is probabilistic,
we show how to enhance the security of Bloom filters using a combination of
randomization and eXecute Only Memory (XOM).

We evaluate eVCFI against standard benchmarks (SPEC) and a web browser
(Mozilla Firefox). Our results show that the default configuration of eVCFI
incurs low-performance overheads on SPEC of 1.3%; and 1.01%, 1.18%, 1.15%
overheads on Kraken, Octane, Dromaeo browser benchmarks. We use Firefox
to showcase the challenges posed by complex C++ software requiring non-trivial
extensibility. We note that other VCFI defenses tend to fail on Firefox. This

Extensible Virtual Call Integrity 725

shows the importance of extensibility support, since an incompatible defense is
as good as no defense, meaning that the software cannot be protected against
virtual call control flow attacks. We believe eVCFI is the first approach that can
harden the Firefox codebase with VCFI.

2 Overview

We summarize C++ dynamic dispatch attack and defense, and then describe our
attack model. For the rest of this paper, we focus on C++ under X86 64/Linux.

2.1 C++ Dynamic Dispatch

C++ implements dynamic dispatch in the form of virtual member functions. A
derived class can override the definition of a virtual function they inherit. Vir-
tual calls, abbreviated as vcall, use a Virtual Function Table (vtable) to dynam-
ically decide which virtual function definition is to be invoked. The vtable is
essentially an array of function pointers, where each virtual function member of
a class is mapped to a corresponding index in the function pointer array. The
vtable is retrieved using a Virtual Function Table Pointer (vptr) stored in an
implicit field (vptr) within the object itself. Given an object pointer (objptr), the
basic template for a virtual call is: (1) read the (vptr) value from the implicit
(objptr->vptr); and (2) call the function pointer at the corresponding index
(idx) as follows:

vptr = objptr->vptr; vptr[idx](...);

Here, we say that the static type of a virtual call site is given by
decltype(*objptr). Under the C++ type system, the dynamic type of (objptr) of
class C can be any (D *), where (D=C) or (D) is derived (possibly indirectly) from
(C). This implements a form of polymorphism, where a derived class (D) can be
upcast to the base class (C), but a virtual call still uses (D)’s definitions. The
object and vtable layout is defined by the Itanium C++ ABI [1] (used in x86 64
Linux). Note the vtable is usually protected from modification using read-only
memory.

Example 1. (Class and vtable Layout) An example class and vtable layout are
illustrated in Fig. 1. Here, we consider a simple hierarchy with two base classes
(C) and (B), and a derived class (D) that inherits from both. We consider a (C)
and (D) object. As per the Itanium C++ ABI, the (C) object has a single vptr
pointing to the first virtual function entry in (C::vtable). Index (−1) contains
the Run-Time Type Information (C::rtti) entry, and index (−2) contains the
offset-to-top explained below. Class (C) does not inherit from another class, and
only has two virtual functions, C::foo and C::bar.

The layout for the (D) object is more complex. Class (D) inherits from two base
classes (C) and (B), i.e., multiple inheritances. So the (D) object has two vptrs,
one for each proper base class. Furthermore, (D::vtable) is a vtable group that

726 Y. Jiang et al.

Fig. 1. Example class and vtable layout.

concatenates: (i) a primary vtable for the virtual function entries of (D) and the
first proper base class of (D); and (ii) a secondary vtable for each proper base
class. For secondary vtables, the offset-to-top is the pointer difference between
the two vptr fields in the (D) object, in this case (−16). The derived class (D)
can override the implementation of any virtual function from a base class. For
example, (D::foo) will point to (D)’s implementation of inherited virtual func-
tion (foo). Otherwise, if (D) does not override (foo), the virtual function entry
defaults to (D::foo=C::foo). �

C++ Dynamic Dispatch Security. The C++ dynamic dispatch design is primar-
ily intended for efficiency rather than security. Since C++ is not a memory-safe
language, an attacker can exploit a memory error (e.g., buffer overflow or use-
after-free) to overwrite vptr values inside objects.

Object pointer integrity can also be violated using type confusion (e.g., a bad
C++ static cast) or Counterfeit Object-oriented Programming (COOP) style-
attacks [18]. Likewise, vptr integrity can be violated using (sub-object) memory,
type confusion, or use-after-free errors to directly overwrite the vptr value with
another value. An attacker can exploit such errors to replace the object or vptr
value with a new value of choice.

2.2 C++ Dynamic Dispatch Defenses

The mainstream defense to vcall control flow hijack is Virtual Call Control
Flow Integrity (VCFI) which validates the correctness of the virtual function
before invocation. VCFI is essentially a specialization of Control Flow Integrity
(CFI) [2] to C++ dynamic dispatch. The basic idea is to associate an allow-set
of valid values to each virtual call site. There are two main variants: (direct) an
allow-set of valid virtual functions; and (indirect) an allow-set of valid vptrs.

Under the assumption that vtables are read-only, the direct and indirect vari-
ants offer similar protection, with indirect being slightly stronger. Many VCFI

Extensible Virtual Call Integrity 727

implementations, such as LLVM-xDSO [14], use the indirect approach and so
do we. Given a call to virtual function (C::f()), ideally the allow-set contains
all vptrs allowable under the C++ type system. This includes all vptrs to pri-
mary/secondary vtables containing: (1) the entry for (C::f()), and (2) the entry
for (D::f()) for all classes (D) derived from (C). For example, considering the
class hierarchy from Fig. 1, the allow-set for the virtual call (c->bar()) is:

Allow = {C::vptr, D::vptr C}
VCFI asks if the vcall is in the allow-set at the virtual call site. The allow-set is
determined by the strength of the implemented VCFI policy, e.g. Sect. 4.1 shows
the effective result from different VCFI systems.

Many implementations of VCFI variants exist, see surveys [5,13,20]. How-
ever, most source-based VCFI defenses require that the class hierarchy is fixed
at compile time, so the allow-set is also fixed. While monolithic and pure C++
code can meet this assumption, complex software often goes beyond, sometimes
using a wide range of heterogeneous components with diverse dynamic behavior
on the class hierarchies and interfacing needs. This requires VCFI solutions that
are extensible which is the focus of this paper. We highlight that a VCFI defense
that is not extensible will simply fail on a codebase without a fixed class hierar-
chy. There are many tradeoffs needed to support extensibility. Here, we mention
some (V)CFI implementations to provide context for the next section. Further
details will be discussed in Sect. 5.

MCFI [16] identified the lack of modularity being an impediment for the
adoption CFI, proposing a Modular CFI (MCFI) supporting separate compila-
tion and dynamic library loading for C. RockJIT [17] extends MCFI with C++
support. MCFI puts the program in a sandbox to protect its data structures,
which can affect performance. A state-of-art VCFI is provided by LLVM [14,15].
LLVM has low overheads, but requires a fixed class hierarchy that is obtained
using Link-Time Optimization (LTO). LTO allows the full (global) class hierar-
chy to be known at compile time. Although LLVM does not provide any exten-
sibility, there also exists an experimental mode, namely LLVM-xDSO, that also
supports dynamic linking and loading. The drawback is a much larger overhead,
as we discuss and evaluate later. As can be seen, there are complex tradeoffs for
VCFI, and existing solutions solve only a subset of our design goals. This can
limit practical adoption, especially for complex/legacy software systems.

2.3 Problem Statement

Using the indirect VCFI check variant, we formalize a VCFI check using the
class hierarchy of the program as follows:

c.vcall(. . .); c.vptr ∈ AllowC? (VCFI-Check)

where c is an object of static type C, and vcall denotes a virtual member
function of C. The VCFI check determines whether vptr belongs to the allow-
set for type C, where D::vptr ∈ AllowC for any D derived from C, or D=C.

In essence, VCFI has three main components:

728 Y. Jiang et al.

– Algorithms for the VCFI check. This can also affect multi-threading.
– Accuracy of the policy check. We use Eq. (VCFI-Check). When extensi-

bility is not used, the allow-set is determined statically (compile-time) under
the C++ semantics. If the program uses dynamic loading, the class hierar-
chy may be extended, meaning that the allow-set(s) need to be dynamically
updated accordingly. Similarly, ad hoc extensions, such as foreign language
interfaces, may also need to be reflected in the allow-set(s).

– Performance of the check. Ideally, overheads should be low.

As is common, we model a strong attacker capable of reading from or writing
to arbitrary memory, subject to the program’s memory protections. We assume
the attacker cannot modify page permissions, and that there exists separate
mitigation for hardware side channels [12]. We assume that the attacker intends
to hijack control flow by compromising C++ dynamic dispatch. Other kinds of
control flow hijack are orthogonal to this paper. We assume vtables reside in
read-only memory (.rodata) and cannot be modified. We also assume that the
attacker has not already hijacked control flow, a standard assumption for CFI-
like defenses.

In order to enforce the VCFI policy, the Allow -set(s) must be constructed
from a diverse and dynamic class hierarchy used by complex programs. We
support various kinds of extensibility. Modularity by separate compilation allows
extensibility by dynamic linking or dynamic loading during execution. This form
of extensibility has automated support. Other kinds of extensibility generally
used are: component object interfaces such as COM or XPCOM; and foreign
language interfaces and language interoperation, e.g. between C++ and Rust.
We classify these under ad hoc extensibility and provide a basic extensibility
mechanism to validate the custom vcalls.

3 Extensible VCFI Enforcement

In this paper, we seek flexibility in extending the allow-set at runtime either
through dynamic loading or ad hoc extensions. In addition, the VCFI check
should be secure, constant-time, and support multi-threading (as class hierar-
chy extensibility involves updates). By casting the VCFI defense as a secure set
membership test, we can examine the known algorithmic set membership trade-
offs, where it is difficult to simultaneously satisfy design goals such as dynamic
sets, constant time, multi-threaded support. Instead, we implement VCFI using
an Approximate Member Query filter (AMQ), which allows for efficient set mem-
bership tests. AMQs are approximate, meaning that there can be false positives,
but not false negatives.

Many possible AMQs have been proposed. In this paper, we use Bloom fil-
ters [3], which aligns well with our efficiency and extensibility design goals.

3.1 VCFI Based on Bloom Filters

Bloom filters [3] are the most well known form of AMQ. Traditionally, Bloom
filters are implemented using a bit array B and a set of k≥1 hash functions

Extensible Virtual Call Integrity 729

Fig. 2. Example Bloom filter VCFI defense for k= 3. Here, we assume that the three
pointers 0x40c920, 0x40c9a0 and 0x41a510 are the only valid members of the Allow -
set. Each value is mapped k= 3 times to the Bloom filter using k= 3 different hash
functions. Here, valid entries map to a non-zero value for each hash function; and the
invalid values map to at least one zero value and are “filtered”

hash1..k. An element x is considered to be a member of the set if:

B[hash1(x)] �= 0 ∧ · · · ∧ B[hashk(x)] �= 0

Else, if the result is 0 for any hashi, the element x is not a member of the set.
Bloom filters are efficient, and testing for membership is constant time.

Figure 2 gives a basic example of a Bloom filter-based VCFI defense. We
assume the only valid members of the allow set are: (vptr) values 0x40c920,
0x40c9a0 and 0x41a510, and that there are 3 hash functions (k = 3). All valid
vptr values map to a non-zero entry and thus will be allowed by the VCFI defense.
The invalid value 0x40d360 by the first hash maps to zero and is disallowed.
Bloom filters are approximate meaning that collisions are possible, as will be
discussed later.

VCFI benefits from the Bloom filter design in multiple ways. Firstly, Bloom
filters are inherently extensible, meaning that new entries for class hierarchy
extensions can be incrementally added at any time. Furthermore, set deletion (for
dynamic unloading) is also supported using “counting” Bloom filters. Secondly,
Bloom filters are inherently efficient, with an O(1) set membership test that can
be implemented using a few instructions. Finally, our Bloom filter implementa-
tion makes exclusive use of atomic operations to add/remove entries, thereby
achieving thread safety without the need for thread synchronization.

3.2 System Design

eVCFI is an implementation of VCFI using Bloom filters, and consists of two
main parts: (1) an LLVM-based program transformation to insert VCFI checks,
and (2) a runtime support library.

730 Y. Jiang et al.

1 movabs $SALT,%rdi # Load 64-bit SALT
2 imul %rax,%rdi # Multiply
3 xor %esi,%esi # Zero accumulator
4 crc32q %rdi,%rsi # CRC32

Fig. 3. Recipe for the mulcrc hash func-
tion. This example assumes the input vptr
is stored in register %rax, and the output
hash value is stored in %rsi.

1 mov (%rdi),%rax # Load vptr
2 ... # Hash into %rsi
3 movabs $BLOOM,%rdx # Load Bloom base
4 testb $0,(%rdx,%rsi)
5 jnz .LOK # Entry non-zero?
6 ud2 # Invalid vptr
7 .LOK:
8 ... # Repeat for k > 1
9 ... # Setup parameters
10 callq *INDEX(%rax) # Call virtualFn()

Fig. 4. Basic recipe for a hardened virtual
call using (salted) Bloom filters

Program Transformation. To enforce the allow-set in a dynamic and extensible
manner, we use program transformation to implement the (VCFI-Check) check
using Bloom filters. The basic instrumentation schema is shown in Figs. 3 and 4.
Here, Fig. 3 implements a single Bloom filter lookup, that is repeated k times,
using the following salted hash function:

hash(salt , vptr) = crc32 (salt × vptr)

Note that the choice of the hash function is a tradeoff between performance
and security. By design, eVCFI uses the salted hash function, mulcrc, which is
parameterized by a salt constant, allowing for k different hash functions to be
readily defined. The Fig. 4 schema implements the hardened vcall. The program
transformation is implemented using an LLVM compiler pass.

Compared to the unprotected vcall, our Bloom filter VCFI uses an addi-
tional 8∗k instructions (4 for the salted hash and 4 for the remainder of the
check, repeated k times). For the minimal k = 1, there will be 8 additional
instructions for the instrumented vcall, and 7 instructions in the execution path
(see Figure 4). In contrast to other VCFI defenses, such as LLVM-xDSO, our
solution does not use a fast/slow-path design. Instead, eVCFI uses a single O(1)
check uniformly for all vcalls, whether the call site needs dynamic extensibility or
not. Dynamic linking/loading is handled by adding entries to the corresponding
Bloom filter itself, as handled by the eVCFI runtime.

Runtime Support. A dynamic Class Hierarchy Analysis (CHA) is used to build
the inheritance relationships between classes at runtime Conceptually, the CHA
establishes a mapping between classes C and the the corresponding AllowC set.
The CHA constructs the allow-sets from the (current) set of loaded modules,
which may be updated at any time via dynamic (un)loading.

The hash function salts (SALTi, i ∈ 1..k) and the base address of the Bloom
filter (BLOOM) are encoded as special dynamic symbols, i.e., the eVCFI-symbols.
During program initialization (i.e., before main is called), and for each dynami-
cally loaded library, the eVCFI-symbols are initialized with suitable randomized
values. To handle dynamic linking/loading, the CHA is incrementally applied

Extensible Virtual Call Integrity 731

to all classes in the loaded library. When the loaded library extends an existing
class hierarchy with a new class, new entries are incrementally added to the cor-
responding allow-sets, i.e., by updating the corresponding Bloom filter. Dynamic
unloading is handled similarly, by removing entries from allow-sets.

Security. We have introduced a VCFI defense based on Bloom filters. However,
the Bloom filters themselves must also be hardened against attack.

– Bloom Filter Integrity. We ensure the integrity of the Bloom filter by
making it read-only. To deal with updates, the most efficient way is to use
the X86 64 Memory Protection Keys (MPK) extension. When updating the
Bloom filter, we grant the write permission to the thread using MPK, while
other threads continue to have read-only access. An additional defense is also
to randomize the location of the Bloom filter (BLOOM).

– Missed Detection Mitigation. The above protects against basic Bloom
filter modification by the attacker. Nevertheless, Bloom filters are inherently
approximate, meaning that false positives are possible. In practice, this means
that an invalid vptr′ value may be accepted as valid by the Bloom filter, if the
value happens to collide with another valid value.1 This can be mitigated by
increasing k, at the cost of performance. Alternatively, we can also randomize
the hash functions by choosing CSPRNG-randomized value(s) for the SALTi at
runtime. The randomized salt(s) make it difficult for the attacker to construct
collisions.

The attacker may also attempt to find a collisions by chance. The missed
detection probability can be approximated using the formula: (1− e−kn/m)k,
where m is the number of entries in the Bloom filter array, k is the number
of hash functions, and n elements have been inserted. By default, eVCFI uses
m= 224 and k is user-configurable, allowing for a security versus time trade-
off. For example, assuming n= 1000, then the missed detection probability
will be ∼5.96×10−5 for k= 1, ∼5.96×10−15 for k= 3, etc. Even for k= 1,
brute force attacks are not practical for most applications, since the program
will immediately abort on a single incorrect guess.

– Runtime Protection. The randomized SALTi parameters are encoded as
immediate values in the instruction sequence that implement the salted hash
function(s) (Fig. 3). In principle, the attacker may also attempt to recover
these values by directly reading and interpreting the executable code residing
in the program’s memory. This can be directly prevented by using Execute
Only Memory (XOM), which ensures that the instrumentation can only ever
be executed, and never read. XOM is supported by Linux, using the standard
mprotect system call, on all X86 64 CPUs with MPK support.

Ad hoc Extensibility. Ad hoc extensibility covers cases where a vcall should be
allowed (intended by the programmer), but would otherwise be detected as an
error. This includes idioms that go beyond the semantics of C++, such as COM
1 Note that, while missed detections are possible, false detections are not. That is, a

Bloom-filter-based VCFI defense will never flag a valid vcall as invalid.

732 Y. Jiang et al.

Table 1. VCFI comparisons

objects implemented as an opaque wrapper, which can be thought of as a pro-
grammatically defined foreign interface. Another example is objects defined in
other languages that “inherit” from a base object defined in C++. Without any
VCFI defense, there is usually no compatibility issue, provided the binary ABI
is respected. With a VCFI, then we want to allow such ad hoc extensions if
intended by the programmer. To support this, eVCFI supports programmer-
specified “extension-lists” that can be used to insert additional entries to the
allow-set(s). Although this approach is manual, it allows for arbitrary ad hoc
extensions that are necessary for supporting complex software such as Firefox.

4 Evaluation

We compare eVCFI with other VCFI defenses and evaluate the performance
on the SPEC2006 C++ benchmark suite [11] and the Firefox web browser. All
experiments run on Ubuntu (kernel version 4.13) with a Xeon Silver 4114 Proces-
sor (2.20GHz, 32GB of RAM). Both the processor and kernel support Memory
Protection Keys (MPK) and eXecute Only Memory (XOM).

4.1 Evaluating VCFI Defenses

To give the overview of each (V)CFI implementation, we compare eVCFI against
the security policies, features and overheads of: MCFI [16], VTV [19], Shrink-
wrap [10] and LLVM. The results are summarized in Table 1. More information
is provided in Appendix A.

The Policies column in Table 1 summarizes our test results on various vcall
attacks using type confusion or memory corruption. The tool either prevents
all attacks (), or some attacks succeed (or), or all attacks succeed ().
We evaluate under several scenarios: (i) a static class hierarchy (the Static col-
umn); and (ii) a dynamic class hierarchy extension using dynamic loading with
dlopen() (the Dynamic column). The baseline is without any VCFI defense,
meaning that all vcall attacks succeed under all use cases.

For the Static case, MCFI exhibits the weakest policy under our testing.
This is because MCFI implements a type-based CFI-policy, rather than a spe-
cialized VCFI policy. VTV implements a stronger policy, but does not detect
derived class attacks under our tests. Finally, Shrinkwrap, LLVM and eVCFI all

Extensible Virtual Call Integrity 733

Table 2. SPEC2006 C++ statistics

SPEC program
Static counts Dynamic counts

Lines of code Number of vtables Number of vcall-sites Number of vcalls (Million)

omnetpp 26.7k 111 2218 3359.34

astar 4.3k 1 1 4996.99

xalanc 266.9k 958 21195 9821.91

namd 3.9k 4 0 0

dealII 94.5k 680 364 164.43

soplex 28.3k 29 638 3.18

povray 78.7k 28 286 0.15

Total 503.3k 1811 24702 18346

enforce an equivalent (strong) VCFI policy for the Static case. For the Dynamic
case, most results are similar to Static, except for LLVM. This is because LLVM
requires the (global) class hierarchy to be determined statically, through Link
Time Optimization (LTO). However, this is not applicable when the class hier-
archy is split between libraries.

Under Features, the non-LTO column indicates whether the VCFI defense
is applicable without LTO. The Ad Hoc column indicates whether the defense
supports ad hoc class hierarchy extensions, such as supporting COM objects or
foreign language interfaces.

Finally, a summary of overheads (w.r.t. to Baseline) on the SPEC bench-
marks is shown under Static Overhead. We note that only LLVM, LLVM-
xDSO and eVCFI achieve a low performance overhead against the vcall-intensive
xalanc benchmark. The overhead of eVCFI exceeds LLVM and LLVM-xDSO,
but supports non-LTO compilation and ad hoc extensions. The full results are
shown in Sect. 4.2 below.

4.2 Evaluation on SPEC Benchmarks

We evaluate the performance of eVCFI on the standard SPEC2006 C++ bench-
mark which represents entire programs that are well-understood and exten-
sively analyzed workloads. We run the (ref) workloads taking the geometric
mean across five runs. Table 2 summarises the SPEC2006 C++ benchmarks giv-
ing source Lines Of Code (sLOC), the number of vtables, and the number of
virtual call sites. Among the SPEC2006 benchmarks, xalanc has the most vcall
sites and vcalls during runtime, thereby incurring the most performance over-
head for VCFI defenses. eVCFI detects the known type confusion bug in xalanc.
For details, see Appendix B. It has been patched for the benchmarking.

We evaluate each tool with -O2 and Link Time Optimization (LTO) enabled.
Although eVCFI does not require LTO, it is nevertheless compatible with LTO,
and LTO is required by LLVM and thus is enabled for a fair comparison. As LTO
is enabled with -O2, more optimization is enabled, meaning that some virtual
calls may be devirtualized. For namd, this results in no virtual calls at runtime,
thus, it is excluded. The experiments use the default eVCFI configuration: a
16MB Bloom filter (m= 224) and mulcrc is used as the (salted) hash function.
The salt (SALTi) parameters are randomized per run.

734 Y. Jiang et al.

Fig. 5. Relative eVCFI overheads for SPEC C++ programs

The SPEC2006 runtime performance is shown in Fig. 5. Columns for dealII,
soplex and povray are omitted as the overheads are negligible (the number of
vcalls is small, see Table 2), but summarized in the geometric mean (Geo.Mean)
column. Even dealII, with 164M virtual calls, has negligible overhead, high-
lighting that both LLVM-xDSO and eVCFI have minimal overheads for pro-
grams that are not virtual call dominant. The overhead of all results is relative
to the baseline, which is LLVM (clang++) with LTO and -O2. We compare the
following:

LLVM-xDSO is the LLVM VCFI implementation with experimental “cross-dso”
support. The implementation uses a fast/slow-path design, where the “fast”
path is equivalent to the standard LLVM VCFI check. If the fast check fails,
a “slow” path is invoked, which checks for dynamic class hierarchy exten-
sions (e.g., dlopen()). The SPEC2006 benchmarks do not use extensibility
features, meaning that only the fast-path will normally be invoked.

LLVM-xDSO-Slow is an artificially modified LLVM cross-dso that exclusively
uses the slow-path VCFI check. This version is intended to represent the
potential “worse case” behaviour of a fast/slow path design.

eVCFI is our implementation. We show results for eVCFI with k = {1, 2, 3} to
demonstrate different performance versus security tradeoffs.

For omnetpp and astar (with k= 1, 2) we see that eVCFI is faster than
LLVM-xDSO for omnetpp and astar, and eVCFI has similar performance for
xalanc and k= = 1. Generally, we see that the overheads of eVCFI increase with
k, representing a performance trade-off. We also see that eVCFI is substantially
faster than LLVM-xDSO-Slow, which highlights the advantage of single unified
check rather than fast/slow-path design. For example, for the vcall-heavy xalanc
benchmark, we see that LLVM-xDSO-Slow has a 61.1% overhead, compared
to 8.5% for eVCFI. In summary, the geometric mean for SPEC2006 is: LLVM-
xDSO 2.7%, LLVM-xDSO-Slow 13.5%, eVCFI k={1,2,3}: 1.3%, 2.8%, 3.7%.

4.3 Evaluating Firefox

We also evaluate eVCFI against the Firefox browser [8] version 78.0 ESR. Firefox
is designed with different components and modules, including a foreign language

Extensible Virtual Call Integrity 735

Fig. 6. Browser benchmarks for native Firefox and eVCFI-enhanced Firefox

interface between C++ and Rust. Firefox is a real-world example of software
requiring class hierarchy extensibility. Any VCFI defense that does not account
for the extensibility requirements may incorrectly flag some vcalls as attacks,
rather than intended behavior. We are also not aware of any existing VCFI
defense that works with Firefox (since Rust versions). The Firefox build system
currently does not support LLVM-xDSO.

Firefox consists of several binaries (executable and modules), and there
are more than 5000 vtables and more than 185K virtual call-sites (most in
libxul.so which is loaded using dlopen()). Firefox is also challenging because
the code requires extensibility features, namely dynamic loading, foreign lan-
guage interfaces (Rust), and XPCOM objects. Firefox is also multi-threaded.

In addition to dynamic loading, we use Firefox to test ad hoc extensibility.
This involves creating an extension-list for the allow-sets to support specific
Firefox idioms, such as XPCOM and vtables that were manually implemented
in Rust. We remark that such ad hoc extensibility requires manual intervention
(i.e., the specification of the extension-list). However, such manual intervention is
necessary in the general case, since arbitrary ad hoc extensions cannot necessarily
be detected automatically.

To show the practical performance of eVCFI, we evaluate the performance
of Firefox using the Kraken, Octane [9], and Dromaeo [6] benchmarks.2 The
benchmark results are in Fig. 6. Overall, eVCFI exhibits low overheads, with the
performance overheads on Kraken, Octane, and Dromaeo being 1.01%, 1.18%,
and 1.15% respectively. We see that eVCFI has acceptable overheads consistent

2 Due to insufficient horizontal space for all the Dromaeo results, we show a repre-
sentative sample that has more differences from the Kraken and Octane results. The
results not shown also have low overheads.

736 Y. Jiang et al.

with the SPEC2006 C++ results. We believe eVCFI is the only VCFI defense
that has been evaluated against Firefox.

5 Related Work

Some surveys and evaluations of CFI and VCFI defenses are [5,13,20]. Here, we
discuss relevant compiler-based VCFI works. ConFIRM [20] show extensibility
features such as dynamic linking/loading and component support with interfaces
beyond C++ are common. Both [13,20] also show that very few VCFI defenses
support extensibility. In this section, we discuss related work focusing on the
tradeoffs of the (V)CFI defenses offering different forms of extensibility: MCFI,
LLVM-xDSO, VTV (and ShrinkWrap). There are also binary VCFI systems
not discussed, being incomparable to source-based ones, and are usually less
accurate with more overhead [5,20].

In Sect. 2.2, we discussed MCFI and LLVM-xDSO. Other (V)CFI implemen-
tations with extensibility support include VTV [19] and ShrinkWrap [10]. VTV
also highlights the importance of modularity and builds the set of vtables at
runtime to validate the vptr . The VTV work itself does not fully implement a
VCFI policy (see Table 1). ShrinkWrap tightens the VTV policy for VCFI.

MCFI uses a transaction-based framework to update its data structures
to support multithreading, and VTV needs to synchronize threads to prevent
data races. In contrast, eVCFI uses Bloom filters that naturally support atomic
updates, which both simplifies the handling of multi-threaded programs as well
as being more efficient.

The underlying data structures need to be updated for extensibility. Thus,
any update also needs to be secure against attacks. MCFI secures its data struc-
tures using a sandbox design. To do so, MCFI effectively limits the program to
a 32-bit address space [16]. However, this can easily introduce incompatibilities,
especially with programs that use large amounts of virtual memory. VTV makes
its data structures read-only, and updates need to block other threads. In eVCFI,
only the thread updating the Bloom filter has write permission using MPK. This
avoids the need for synchronization and operating system intervention.

In MCFI, the overhead is a combination of the sandboxing and the cost of the
CFI check itself. The results in [17] show that, due to the sandboxing overhead,
even programs like namd, soplex and povray incur a performance penalty. In
contrast, these benchmarks, with few vcalls, incur negligible cost (near zero) for
both LLVM and eVCFI, This is also confirmed by our results in Table 1, see
astar which has relatively fewer vcalls.

The overheads for VTV on SPEC from [19] are: omnetpp 8%, astar 2.4%,
xalanc 19.2%. Similar overheads were reproduced in [5]. Generally, these over-
heads are much greater than LLVM, which is not surprising as LLVM succeeds
VTV. Our timings in Table 1 also give another reference point. However (non-
cross-dso) LLVM does not support extensibility and being a purely static solu-
tion, should have the lowest overhead. Still we see that eVCFI (with extensibility)
can compete. We also see that eVCFI is much faster than LLVM-xDSO-Slow.

Extensible Virtual Call Integrity 737

Specifically, eVCFI has O(1) time guarantees, regardless of the extensibility
usage while also adhering to the language semantics VCFI policy.

6 Conclusion

It is common for large/complex software to be broken into different modules,
libraries or plugins that may be loaded dynamically. Furthermore, software may
need to support ad hoc extensions, such as foreign language interfaces or COM
objects. Such extensibility is generally incompatible with most existing VCFI
defenses, or the defense is prohibitively slow. As such, no defense will be used,
potentially leaving the program vulnerable.

In this paper, we presented a new VCFI defense based on Approximate Mem-
ber Query (AMQ) filters, specifically Bloom filters. We show that Bloom filters
can be used to implement an efficient VCFI defense, in the form of the eVCFI
tool. Specifically, eVCFI supports O(1) checks that are implemented in a few
instructions. Furthermore, eVCFI supports dynamic loading and ad hoc exten-
sions for multi-threaded programs, without relying on a fast/slow path design.
We also show how Bloom filters can be hardened using a combination of random-
ization and eXecute Only Memory (XOM). We believe eVCFI is the first VCFI
defense which can be used to harden Firefox—a challenging target that uses
dynamic linking/loading, component interfaces, and C++ to Rust interoperation.
Our Firefox compatibility testing shows eVCFI can provide greater extensibility
support than existing VCFI defenses.

As future work, we believe our underlying design could also be adapted to
other CFI-like defenses, beyond VCFI. Essentially, any defense that depends on
a set membership query, including both source-based and binary CFI defenses,
can likely use our approach.

Acknowledgments. We thank the anonymous reviewers for their valuable comments.
This work has been supported in part by the Ministry of Education, Singapore (Grant
No. MOE2018-T2-1-142) and by the National Research Foundation, Singapore under
its NSoE DeST-SCI programme (Grant No. NSoE DeST-SCI2019-0006). Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the authors and do not reflect the views of National Research Foundation, Singapore.

A VCFI Test Programs

To evaluate the security and usability of VCFI defenses, we construct a test
program using the following class hierarchy:

738 Y. Jiang et al.

Table 3. VCFI policy test results

Class hierarchy Ideal MCFI VTV ShrinkWrap LLVM LLVM-xDSO eVCFI

Static

TypeConf Sibling(A2) ✓ ✗ ✓ ✓ ✓ ✓ ✓

TypeConf Derived(A11) ✓ ✗ ✗ ✓ ✓ ✓ ✓

TypeConf InterClass(B1/C1) ✓ ✓ ✓ ✓ ✓ ✓ ✓

MemCorr Sibling(A2) ✓ ✗ ✓ ✓ ✓ ✓ ✓

MemCorr Derived(A11) ✓ ✗ ✗ ✓ ✓ ✓ ✓

MemCorr InterClass(B1/C1) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic

TypeConf Sibling(A2) ✓ ✗ ✓ ✓ - ✓ ✓

TypeConf Derived(A11) ✓ ✗ ✗ ✓ - ✓ ✓

TypeConf InterClass(B1/C1) ✓ ✓ ✓ ✓ - ✓ ✓

MemCorr Sibling(A2) ✓ ✗ ✓ ✓ - ✓ ✓

MemCorr InterClass(B1) ✓ ✗ ✓ ✓ - ✓ ✓

MemCorr InterClass(C1) ✓ ✓ ✓ ✓ - ✓ ✓

The test program implements common vcall vulnerabilities, including COOP,
type confusion and memory corruption. We also test both a static and dynamic
class hierarchy, with the latter extended via dlopen(). The results are shown
in Table 3. Here, the Ideal column represents the expected result for a complete
VCFI defense. We use the following notation:

“✗”: The defense does not protect against the vcall attack.
“✓”: The defense works correctly and aborts the program preventing the attack.
“-”: This is when the defense is incompatible For example, LLVM (non-cross-

dso) does not support extensions using dlopen().

B Invalid Virtual Call Detected in xalanc

The eVCFI tool detects an invalid virtual call on line 1018 of
SchemaValidator.cpp from the xalanc benchmark:

SchemaGrammar& sGrammar =
(SchemaGrammar&) grammarEnum.nextElement();

sGrammar.getGrammarType();

At runtime, the (grammarEnum.nextElement) member function may return a
reference to an object of type (DTDGrammar) that is not derived from the class
(SchemaGrammar). This bug has been independently detected by other tools,
including LLVM-xDSO [14], vtable interleaving [4] and type confusion sanitizers
such as EffectiveSan [7]. For the performance evaluation, we patched xalanc to
remove the bad cast and resolve the invalid virtual call.

Extensible Virtual Call Integrity 739

References

1. Itanium C++ ABI (2022). http://itanium-cxx-abi.github.io/cxx-abi/
2. Abadi, M., Budiu, M., Erlingsson, Z., Ligatti, J.: Control-flow integrity. In: Com-

puter and Communication Security. ACM (2005)
3. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 422–426 (1970)
4. Bounov, D., Kici, R., Lerner, S.: Protecting C++ dynamic dispatch through

VTable interleaving. In: Network and Distributed Systems Security. The Internet
Society (2016)

5. Burow, N., et al.: Control-flow integrity: precision, security, and performance. ACM
Comput. Surv. 50(1), 1–33 (2017)

6. Dromaeo (2022). https://github.com/jeresig/dromaeo
7. Duck, G., Yap, R.: EffectiveSan: type and memory error detection using dynami-

cally typed C/C++. In: ACM-SIGPLAN Symposium on Programming Language
Design and Implementation. ACM (2018)

8. Firefox Web Browser (2022). https://www.mozilla.org/
9. Octane 2.0 (2022). http://chromium.github.io/octane/

10. Haller, I., Goktas, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: ShrinkWrap:
VTable protection without loose ends. In: Annual Computer Security Applications
Conference. ACM (2015)

11. Henning, J.: SPEC CPU2006 benchmark descriptions. Comput. Arch. News 34(4),
1–17 (2006)

12. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Security
and Privacy. IEEE (2019)

13. Li, Y., Wang, M., Zhang, C., Chen, X., Yang, S., Liu, Y.: Finding cracks in shields:
on the security of control flow integrity mechanisms. In: Computer and Communi-
cation Security. ACM (2020)

14. LLVM (2022). https://clang.llvm.org/docs/ControlFlowIntegrity.html
15. LLVM (2022). https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
16. Niu, B., Tan, G.: Modular control-flow integrity. In: Programming Language Design

and Implementation. ACM (2014)
17. Niu, B., Tan, G.: RockJIT: securing just-in-time compilation using modular

control-flow integrity. In: Computer and Communication Security. ACM (2014)
18. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A., Holz, T.: Counterfeit

object-oriented programming: on the difficulty of preventing code reuse attacks in
C++ applications. In: Security and Privacy. IEEE (2015)

19. Tice, C., et al.: Enforcing forward-edge control-flow integrity in GCC & LLVM.
In: Security Symposium. USENIX (2014)

20. Xu, X., Ghaffarinia, M., Wang, W., Hamlen, K.: CONFIRM: evaluating compat-
ibility and relevance of control-flow integrity protections for modern software. In:
Security Symposium. USENIX (2019)

