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Memory Errors
• Memory errors usually form critical 
vulnerabilities in low-level languages

• Defenses against memory errors

Question: How to accurately evaluate the security effectiveness of defenses?

• The primary source of vulnerabilities 
• 70% severe security bugs in Chrome • Tradeoffs due to constraints 

from overhead and compatibility.

Address Sanitizer

Stack Canary
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Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

GAP between T. and P.

CVEs

Limited Scope
Biased Choice

Real-world Case Studies

Benchmarks

Synthesized test cases

Higher Coverage
Better Accuracy

Experimental Validation Theoretical Validation 
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• Runtime Intrusion Prevention Evaluator(RIPE), ACSAC’11
• RIPE generates hundreds of test cases via five dimensions

• RIPE is widely used in evaluating memory error defenses’ effectiveness
• LBC, COTS CFI, Griffin, Fine-CFI, etc.

Runtime Intrusion Prevention Evaluator(RIPE) 

> “the RIPE testbed only considers a limited number of buffer overflow 
vulnerabilities. There could be many other types of vulnerabilities and 
exploit skills in practice”, Finding Cracks in Shields: On the Security of 
Control Flow Integrity Mechanisms, Yuan, CCS’20
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RIPE(2011) Performance in 2021
Effectiveness = Attacks/Exploits Prevented Rate

=> Overrated Effectivenesses on defenses - over 90%

Inaccurate Baseline Result – 51% (many RIPE exploits fail)



RecIPE
An extensible and comprehensive successor to RIPE



Design Goals

Easy to extend and customize

Accurate and comprehensive measurement 

Diverse testcases and higher coverage

Support both 32 and 64 bits architecture



Benchmark Overview
Two Components:

• TestGen: Generating Testcases to Individual Folders
• DefEval: Mimicing Attackers; Giving Analysis Results
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Configurable Templates => Extensibility & Customizability

Challenges:
● To be compatible with various attributes 
● To switch context under various scenarios
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DefEval
Attacker              Analyzer

Equipped with exploits:
● return-to-shellcode
● return-to-libc
● ROP, SROP

- Runtime Log => Attacked?
- File Existence => Exploited?

Attack? + Exploit? 
=>  Effectiveness Results
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Effectiveness Evaluation
Accurate Baseline — No Protection 0%

Moderate Score — ASan 50%
=> Reserve space for stronger defense 
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Effectiveness towards various defenses
● Clearly present pros and cons of each defense
● Help to understand limitations:

○ ASan does not protect non-linear OOB
○ LowFat does not protect Sub-Object Overflow
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Some Surprises
● Special Hardenings on Special Functions

○ memcpy => “memcpy_safe”
○ homebrew memcpy => get “instrumented”
○ bcopy => not widely considered
○ read => “syscall”



More Detailed Results



More Detailed Results



● We propose a newly designed benchmark, RecIPE, for 

evaluating memory error defenses’ effectiveness.

● RecIPE is extensible, comprehensive, and accurate.

● RecIPE helps to understand the security coverage of 

memory error defense and even implementation details.

● RecIPE is available at 

https://github.com/YuanchengJiang/recipe-benchmark 

Summary



Thanks


