
RecIPE: Revisiting the Evaluation
of Memory Error Defenses

Yuancheng Jiang, Roland H.C. Yap, Zhenkai Liang, Hubert Rosier

AsiaCCS 2022

Memory Errors
• Memory errors usually form critical
vulnerabilities in low-level languages

Memory Errors
• Memory errors usually form critical
vulnerabilities in low-level languages

• The primary source of vulnerabilities
• 70% severe security bugs in Chrome

Out of the 58 in-the-wild 0-days in 2021, 67% were memory corruption vulnerabilities.

Memory Errors
• Memory errors usually form critical
vulnerabilities in low-level languages

• Defenses against memory errors

• The primary source of vulnerabilities
• 70% severe security bugs in Chrome

Stack Canary

Out of the 58 in-the-wild 0-days in 2021, 67% were memory corruption vulnerabilities.

Memory Errors
• Memory errors usually form critical
vulnerabilities in low-level languages

• Defenses against memory errors

• The primary source of vulnerabilities
• 70% severe security bugs in Chrome

Address Sanitizer

Stack Canary

Out of the 58 in-the-wild 0-days in 2021, 67% were memory corruption vulnerabilities.

Memory Errors
• Memory errors usually form critical
vulnerabilities in low-level languages

• Defenses against memory errors

• The primary source of vulnerabilities
• 70% severe security bugs in Chrome • Tradeoffs due to constraints

from overhead and compatibility.

Address Sanitizer

Stack Canary

Out of the 58 in-the-wild 0-days in 2021, 67% were memory corruption vulnerabilities.

Memory Errors
• Memory errors usually form critical
vulnerabilities in low-level languages

• Defenses against memory errors

Question: How to accurately evaluate the security effectiveness of defenses?

• The primary source of vulnerabilities
• 70% severe security bugs in Chrome • Tradeoffs due to constraints

from overhead and compatibility.

Address Sanitizer

Stack Canary

Existing Evaluation Methods
Experimental Validation Theoretical Validation

Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

Experimental Validation Theoretical Validation

Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

GAP between T. and P.

Experimental Validation Theoretical Validation

Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

GAP between T. and P.

CVEs

Real-world Case Studies

Experimental Validation Theoretical Validation

Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

GAP between T. and P.

CVEs

Limited Scope
Biased Choice

Real-world Case Studies

Experimental Validation Theoretical Validation

Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

GAP between T. and P.

CVEs

Limited Scope
Biased Choice

Real-world Case Studies

Benchmarks

Synthesized test cases

Experimental Validation Theoretical Validation

Existing Evaluation Methods

• Showing Probabilities
• Hash Collision
• Bypassing ASLR

GAP between T. and P.

CVEs

Limited Scope
Biased Choice

Real-world Case Studies

Benchmarks

Synthesized test cases

Higher Coverage
Better Accuracy

Experimental Validation Theoretical Validation

• Runtime Intrusion Prevention Evaluator(RIPE), ACSAC’11
• RIPE generates hundreds of test cases via five dimensions

Runtime Intrusion Prevention Evaluator(RIPE)

• Runtime Intrusion Prevention Evaluator(RIPE), ACSAC’11
• RIPE generates hundreds of test cases via five dimensions

• RIPE is widely used in evaluating memory error defenses’ effectiveness
• LBC, COTS CFI, Griffin, Fine-CFI, etc.

Runtime Intrusion Prevention Evaluator(RIPE)

• Runtime Intrusion Prevention Evaluator(RIPE), ACSAC’11
• RIPE generates hundreds of test cases via five dimensions

> “the exploits are all very similar; … the sole purpose of overflowing
buffers; … it makes strong assumptions about the compiler and the
operating systems.”, High system-code security with low overhead,
Wagner, SP’15

• RIPE is widely used in evaluating memory error defenses’ effectiveness
• LBC, COTS CFI, Griffin, Fine-CFI, etc.

Runtime Intrusion Prevention Evaluator(RIPE)

• Runtime Intrusion Prevention Evaluator(RIPE), ACSAC’11
• RIPE generates hundreds of test cases via five dimensions

• RIPE is widely used in evaluating memory error defenses’ effectiveness
• LBC, COTS CFI, Griffin, Fine-CFI, etc.

Runtime Intrusion Prevention Evaluator(RIPE)

> “the RIPE testbed only considers a limited number of buffer overflow
vulnerabilities. There could be many other types of vulnerabilities and
exploit skills in practice”, Finding Cracks in Shields: On the Security of
Control Flow Integrity Mechanisms, Yuan, CCS’20

RIPE(2011) Performance in 2021
Effectiveness = Attacks/Exploits Prevented Rate

RIPE(2011) Performance in 2021
Effectiveness = Attacks/Exploits Prevented Rate

Inaccurate Baseline Result – 51% (many RIPE exploits fail)

RIPE(2011) Performance in 2021
Effectiveness = Attacks/Exploits Prevented Rate

=> Overrated Effectivenesses on defenses - over 90%

Inaccurate Baseline Result – 51% (many RIPE exploits fail)

RecIPE
An extensible and comprehensive successor to RIPE

Design Goals

Easy to extend and customize

Accurate and comprehensive measurement

Diverse testcases and higher coverage

Support both 32 and 64 bits architecture

Benchmark Overview
Two Components:

• TestGen: Generating Testcases to Individual Folders
• DefEval: Mimicing Attackers; Giving Analysis Results

TestGen

TestGen Configs Templates Vul Source
+ =

TestGen Configs Templates Vul Source
+ =

Configurable Templates => Extensibility & Customizability

TestGen Configs Templates Vul Source
+ =

Configurable Templates => Extensibility & Customizability

Challenges:
● To be compatible with various attributes
● To switch context under various scenarios

DefEval

DefEval
Attacker

Equipped with exploits:
● return-to-shellcode
● return-to-libc
● ROP, SROP

DefEval
Attacker Analyzer

Equipped with exploits:
● return-to-shellcode
● return-to-libc
● ROP, SROP

- Runtime Log => Attacked?
- File Existence => Exploited?

DefEval
Attacker Analyzer

Equipped with exploits:
● return-to-shellcode
● return-to-libc
● ROP, SROP

- Runtime Log => Attacked?
- File Existence => Exploited?

Attack? + Exploit?
=> Effectiveness Results

Effectiveness Evaluation

Effectiveness Evaluation
Accurate Baseline — No Protection 0%

Effectiveness Evaluation
Accurate Baseline — No Protection 0%

Moderate Score — ASan 50%
=> Reserve space for stronger defense

Effectiveness towards various defenses
● Clearly present pros and cons of each defense

Effectiveness towards various defenses
● Clearly present pros and cons of each defense
● Help to understand limitations:

Effectiveness towards various defenses
● Clearly present pros and cons of each defense
● Help to understand limitations:

○ ASan does not protect non-linear OOB

Effectiveness towards various defenses
● Clearly present pros and cons of each defense
● Help to understand limitations:

○ ASan does not protect non-linear OOB
○ LowFat does not protect Sub-Object Overflow

Some Surprises
● Special Hardenings on Special Functions

Some Surprises
● Special Hardenings on Special Functions

Some Surprises
● Special Hardenings on Special Functions

○ memcpy => “memcpy_safe”

Some Surprises
● Special Hardenings on Special Functions

○ memcpy => “memcpy_safe”
○ homebrew memcpy => get “instrumented”

Some Surprises
● Special Hardenings on Special Functions

○ memcpy => “memcpy_safe”
○ homebrew memcpy => get “instrumented”
○ bcopy => not widely considered

Some Surprises
● Special Hardenings on Special Functions

○ memcpy => “memcpy_safe”
○ homebrew memcpy => get “instrumented”
○ bcopy => not widely considered
○ read => “syscall”

More Detailed Results

More Detailed Results

● We propose a newly designed benchmark, RecIPE, for

evaluating memory error defenses’ effectiveness.

● RecIPE is extensible, comprehensive, and accurate.

● RecIPE helps to understand the security coverage of

memory error defense and even implementation details.

● RecIPE is available at

https://github.com/YuanchengJiang/recipe-benchmark

Summary

Thanks

