Detecting Logic Bugs in Graph Database Management Systems
via Injective and Surjective Graph Query Transformations

, Jiahao Liu, Jinsheng Ba
Roland Yap, Zhenkai Liang, Manuel Rigger

Database Systems: Relational vs. Graph

m Relational Data Model
MHSQL ?SQLite POSth’eSQL StudentCourses |

Studentld Course Id
Courses
ORACLE Students 001 1
ID Name 001 2 D Name
001 Sam 001 3 1 SQL Server
. 2 ASP.NET
MariaDB 6. 002 | Mary 002 3
Foundation COCkroaChDB 003 Tine 002 2 3 MongoDB
004 Jay 4 Java
5 PHP

Database Systems: Relational vs. Graph

AN

MySsaoL® ?SQLite

ORACLE

Mar

Graph Data Model

PostgreSQL

iaDB

Foundation

¢ CockroachDB

:RATED

:Actor

Rate: 4.7

0

:ACTED_IN
Name:ohn Role: Alice
Born: 1966

Relational Data Model

StudentCourses
Studentid Course Id |
Students 001 1 Courses
ID Name 001 2 D Name
001 Sam 001 3 1 SQL Server
002 Mary 002 3 2 ASP.NET
003 Tine 002 4 3 MongoD8
004 Jay 4 Java
5 PHP

>r]e04j (:\7 JanusGraph

«®
Apache,\
TinkerPop AGENS

Graph Database

-
The Fastest Growing Model in Past Decade*

‘O Graph Database Systems ‘O Relational Database Systems -+ Others

1400

1120
[0}
wv
(3]
)
o 840
@
P
E
= 560
(o}
(@]
(a W
280
100 O
0
Dec2012 Oct2013 Aug2014 Jun2015 Apr2016 Feb2017 Dec2017 Oct2018 Aug2019 Jun2020 Apr2021 Feb2022 Dec2022 Oct2023
*: Statistics collected at db-rank: https://db-engines.com/en/ranking categories 2

https://db-engines.com/en/ranking_categories

-
The Fastest Growing Model in Past Decade*

‘O Graph Database Systems ‘O Relational Database Systems -+ Others

1400

1120
]
wn
90
(]

S 840
RS
E

= 560
Q.
o
[

280

100

Dec2012 Oct2013 Aug2014 Jun2015 Apr2016 Feb2017 Dec2017 Oct2018 Aug2019 Jun2020 Apr2021 Feb2022 Dec2022 Oct2023

Graph Database Testing becomes essential to improve Robustness and Accuracy

*: Statistics collected at db-rank: https://db-engines.com/en/ranking categories 2

https://db-engines.com/en/ranking_categories

-
Bug Categories in Database Testing

Internal Errors (Crash): out of service (segfault, unexpected exception)

® Oracle: sanitizers, unexpected exception handlers

e Difficulty: low (users can help to submit issues when noticed)

-
Bug Categories in Database Testing

Internal Errors (Crash): out of service (segfault, unexpected exception)

® Oracle: sanitizers, unexpected exception handlers
e Difficulty: low (users can help to submit issues when noticed)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

e Oracle: test oracles like differential or metamorphic testing

e Difficulty: high (logic bugs often go unnoticed by users without alerts)

-
Bug Categories in Database Testing

Internal Errors (Crash): out of service (segfault, unexpected exception)

® Oracle: sanitizers, unexpected exception handlers
e Difficulty: low (users can help to submit issues when noticed)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

e Oracle: test oracles like differential or metamorphic testing
e Difficulty: high (logic bugs often go unnoticed by users without alerts)

Performance Issues: unreasonable query computing time

e Oracle: test oracles like differential or metamorphic testing
e Difficulty: high (hard to discover performance issues without references)

3

-
Bug Categories in Database Testing

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

e Oracle: test oracles like differential or metamorphic testing
e Difficulty: high (logic bugs often go unnoticed by users without alerts)

Performance Issues: unreasonable query computing time

e Oracle: test oracles like differential or metamorphic testing
e Difficulty: high (hard to discover performance issues without references)

3

Bug Categories in Database Testing

N
-

What is the effective test oracle for
discovering logic bugs when testing
graph database systems?

Existing Approaches

Grand (ISSTA’22): differential testing on Gremlin graph databases

Existing Approaches

Grand (ISSTA’22): differential testing on Gremlin graph databases
©) high false alarm rate

Essential Semantic Difference

[foo(id, name) IR n
RedisGraph m

Existing Approaches

Grand (ISSTA’22): differential testing on Gremlin graph databases
© high falsealarmrate () many missed bugs

Neo4)

[foo (id, name)

RedisGraph

Essential Semantic Difference

Shared Codebase

[

JanusGraph

TinkerPop

HugeGraph ™

EXiSti n g Ap p roa C h es Cypher, Gremlin are the top two

popular graph query languages

Grand (ISSTA’22): differential testing on Gremlin graph databases
© high falsealarmrate () many missed bugs & Cypher not supported

Essential Semantic Difference Shared Codebase JanusGraph

[foo(id, name) Neo4) n { TinkerPop

RedisGraph n

HugeGraph ™

EXiSti n g Ap p roa C h es Cypher, Gremlin are the top two

popular graph query languages

Grand (ISSTA’22): differential testing on Gremlin graph databases
© high falsealarmrate () many missed bugs & Cypher not supported

Essential Semantic Difference Shared Codebase JanusGraph

[foo(id, name) Neo4) n [TinkerPop

RedisGraph n

GDBMeter (ISSTA’23): metamorphic testing (TLP¥)
e focus on mutating predicates (constraints)

HugeGraph

.GDBMeter

*: Ternary Logic Partitioning (TLP) splits predicate P into three possible outcomes: True, False, or Null. 4

EXiSti n g Ap p roa C h es Cypher, Gremlin are the top two

popular graph query languages

Grand (ISSTA’22): differential testing on Gremlin graph databases
© high falsealarmrate () many missed bugs & Cypher not supported

Essential Semantic Difference Shared Codebase JanusGraph
[foo(id, name) Neo4) n [TinkerPop
RedisGraph n : HugeGraph

GDBMeter (ISSTA’23): metamorphic testing (TLP¥)
e focus on mutating predicates (constraints)

.GDBMeter

@ shows limited effectiveness (most bugs are NOT related to Graph)

*: Ternary Logic Partitioning (TLP) splits predicate P into three possible outcomes: True, False, or Null. 4

EXiSti n g Ap p roa C h es Cypher, Gremlin are the top two

popular graph query languages

Grand (ISSTA’22): differential testing on Gremlin graph databases
© high falsealarmrate () many missed bugs & Cypher not supported

Essential Semantic Difference Shared Codebase JanusGraph

[foo(id, name) Neo4) n [TinkerPop

RedisGraph n

GDBMeter (ISSTA’23): metamorphic testing (TLP¥)
e focus on mutating predicates (constraints)

HugeGraph

.GDBMeter

@ shows limited effectiveness (most bugs are NOT related to Graph)

3? [Why? Have we considered all features in graph queries?]

*: Ternary Logic Partitioning (TLP) splits predicate P into three possible outcomes: True, False, or Null. 4

Consider Graph When Testing Graph

MATCH (a:Movie)--(b)--(c):="
WHERE a.year=2012 .

RETURN count(a) LIMIT 1

h J

Consider Graph When Testing Graph

MATCH (a:Movie)--(b)--(c):="
WHERE a.year=2012 ... __

RETURN count(a) LIMIT 1

(& J

Additional Constraints
——— 4 inGraph Queries

Consider Graph When Testing Graph

MATCH (a:Movie)--(b)--(c):="
WHERE a.year=2012 ...

RETURN count(a) LIMIT 1 -}l |

(& J

(must-have unit representing the look-like of fetched data)

Additional Constraints
——— 4 inGraph Queries

In addition to mutating predicates like existing works, we
aim to mutate the graph patterns to generate new testing queries

Consider Graph When Testing Graph

MATCH (a:Movie)--(b)--(c):="
WHERE a.year=2012 ...

RETURN count(a) LIMIT 1 -}l |

(& J

(must-have unit representing the look-like of fetched data)

Additional Constraints
——— 4 inGraph Queries

In addition to mutating predicates like existing works, we
aim to mutate the graph patterns to generate new testing queries

a2 [How to systematically mutate Graph Patterns?]

(a)--(b)--(c) =& OO0 = ?

From Graph to Directed Edge Sets

<

&

:Actor

Name: John
Born: 1966

:ACTED_IN
Role: Alice

:RATED

Rate: 4.7

:RATED

Rate: 4.5

:User

Name: Tom
Id: 000116

=

-[:ACTED_IN]->

‘O(:Movie)

O(:Actor)

- [:RATED] ->

‘O(:Movie)

- [:RATED] ->

‘O(:Actor)

Directed Edge Sets: edges with their heads, tails, and edges information

From Graph to Directed Edge Sets

:RATED

Rate: 4.7

:Actor
:ACTED_IN
Name: John i | RoIeAIlce
Born: 1966

:RATED

Rate: 4.5

:User

Name: Tom
Id: 000116

=

O(:Actor) -[:ACTED_IN]-> ‘O(:Movie)
O(:User) - [:RATED] -> ‘O(:Movie)
O(:User) - [:RATED] -> ‘O(:Actor)

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation—) Graph Pattern Mutation —) Sets Mapping

From Graph to Directed Edge Sets

O(:Actor) -[:ACTED_IN]-> ‘O(:Movie)

- :RATED
:Actor Rate: 4.7 :User |:> (:User) - [:RATED] -> (:Movie)
:ACTED_IN :RATED O =O

Role: Alice Rate: 4.5
Name: John i 2= 7VeE Name: Tom
Born: 1966 Id; 000116 O(fees) “LRATERIZ> =O(Hhetor)

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation—) Graph Pattern Mutation —) Sets Mapping

R N o [O™
/ cee / 227 e ° - e G

Restricted Query Mutation Restricted Pattern Mutation Injective Mapping

From Graph to Directed Edge Sets

O(:Actor) -[:ACTED_IN]-> ‘O(:Movie)
- :RATED g
:Actor Rate: 4.7 :User |:> (:User) - [:RATED] -> (:Movie)
-ACTED_IN :RATED O >O
Name:John i . RoIeAIlce Rate: 4.5 Name: Tom : A
Born: 1966 Id: 000116 O(:User) - [:RATED] -> ’O(:Actor)

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation—) Graph Pattern Mutation —) Sets Mapping

[REREETT] o (B
S :
/] (oK)

Restricted Query Mutation Restricted Pattern Mutation Injective Mapping

From Graph to Directed Edge Sets

O(:Actor) -[:ACTED_IN]-> ‘O(:Movie)

- :RATED
:Actor Rate: 4.7 :User |:> (:User) - [:RATED] -> (:Movie)
:ACTED_IN :RATED O =O

Role: Alice Rate: 4.5
Name: John i 2= 7VeE Name: Tom
Born: 1966 Id; 000116 O(fees) “LRATERIZ> =O(Hhetor)

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation—) Graph Pattern Mutation —) Sets Mapping

R M OnONMIORO
L :
/ Match (:A)-[:x]->(:B) / e’e —’

->(:C) Return Count ()

Restricted Query Mutation Restricted Pattern Mutation Injective Mapping

-
GraphGenie*:

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries

[Q Base Query: MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 RETURN count(a);] (LQ),\/O (F Py >[Result: 310 k

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries

[Q Base Query: MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 RETURN count(a);] o o >[Result: 310

éﬁ) Transformation: SymmetricPattern = B)A)—f——————— "~ — > 620=310? ;(WJ
Q

MATCH (c:Movie)<-[b]-(a:User) WHERE c.year=2012 RETURN count(a); Result: 620 =i

(

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries: ™ """ -/~

[Q Base Query: MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 RETURN count(a);] o o [Result: 310

éﬁ) Transformation: SymmetricPattern =(CHB)—HA)—f———————— > 620=3107? ;év)
Q

MATCH (c:Movie)<-[b]-(a:User) WHERE c.year=2012 RETURN count(a); '[Result: 620

(

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries

[Q Base Query: MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 RETURN count(a);] o o >[Result: 310 @D
éﬁ) Transformation: SymmetricPattern =\CB+—HA)—f7—F————— ————» 620=3107? T(V)
[0, MATCH (c:Movie)<-[b]-(a:User) WHERE c.year=2012 RETURN count(a); Result: 620 X
(<) Transformation: AddEdgeType <(Ap>»By»C) " —/—————— ———» 288<310? -
(Result: 288 Iél

[Q2® MATCH (a:User)-|b:Rated]->(c:Movie) WHERE c.year=2012 RETURN count(a);

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries

[Q Base Query: MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 RETURN count(a);] o o >[Result: 310 @D

éﬁ) Transformation: SymmetricPattern = B)A)—f——————— _— — > 620=310? T(V)
e

MATCH (c:Movie)<-[b]-(a:User) WHERE c.year=2012 RETURN count(a); Result: 620

(<) Transformation: AddEdgeType <(Ap>»By»C) " —/—————— ———» 288 <3107

X

v

S v

[Q,” MATCH (a:User)-[b:Rated]->(c:Movie) WHERE c.year=2012 RETURN count(a); (Result: 288 g

l (=*) Transformation: MoveLabelPredicate = &BL ——————— —» gg; i gég:

[Q3®®MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 AND b:Rated RETURN count(a);] =[Result: 252 QD
Note: (=) indicates bijective rule, (<) indicates surjective-only rule, (*) indicates rules combination | Graph Database | (v) indicates bug validation

1

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

-
GraphGenie*:
first metamorphic testing approach considering graph pattern mutations

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

e Query Generation: focus on Cypher, diverse in graph patterns, incremental
e Transformation Combinations: helps to generate more complex graph queries

é N

[Q Base Query: MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 RETURN count(a);] o o >{ Result: 310 GD

éﬁ) Transformation: SymmetricPattern =(CB)HA)—f———————— —»> 620 =3107? T(V)
e

MATCH (c:Movie)<-[b]-(a:User) WHERE c.year=2012 RETURN count(a); ->[Result: 620

(<) Transformation: AddEdgeType <(Ay>»B)j>»Cc) - ——————— —» 288 <3107

X

v

S v

[Q,” MATCH (a:User)-[b:Rated]->(c:Movie) WHERE c.year=2012 RETURN count(a); >(Result: 288 g

l (=*) Transformation: MoveLabelPredicate = &BL ——————— —» gg; i gég:

[Q3®®MATCH (a:User)-[b]->(c:Movie) WHERE c.year=2012 AND b:Rated RETURN count(a);] =[Result: 252 QD
Note: (=) indicates bijective rule, (<) indicates surjective-only rule, (*) indicates rules combination | Graph Database | (v] indicates bug validation

S

1

*: GraphGenie is available at https:/github.com/YuanchengJiang/GraphGenie ;

https://github.com/YuanchengJiang/GraphGenie

Graph Query Transformations (GQT)

@ Structure-GQT: mutations considering Graph patterns
(P Property-GQT: mutations considering Graph properties
(O Non-GQT: mutations on other parts of graph queries

ID Rule Name Class Type Transformation Example (In Cypher)

01 SymmetricPattern © Equivalent Replace graph pattern with a symmetric one MATCH (A:MOVIE)--(B:MOVIE) RETURN COUNT(AB);

02 UnfoldCyclicPattern () Equivalent Unfold cyclic pattern via adding predicate MATCH (A)--(B:MOVIE)--(CA) WHERE A=C RETURN COUNT(A);

03 PatternPartition () Equivalent Split graph pattern to disjoint sub-patterns ~ MATCH (A)-->(B:MOVIE), (B:MOVIE)-->(C) RETURN COUNT(A);

04 AddEdgeDirection () Variant Add edge direction to undirected edge MATCH (A)-->(B:MOVIE) WHERE B.YEAR=2012 RETURN COUNT(A);
05 SpanningSubgraph () Variant Spanning subgraph by deleting edges MATCH (A)-->(B:MOVIE)-->(C);{A)—>{€)} RETURN COUNT(A);

06 InducedSubgraph () Variant Induced subgraph by deleting vertices MATCH (A)--(B:MOVIE)--(C)—{B:A€TOR)} RETURN COUNT(A);

07 ExpandPattern © Variant Expand graph pattern by adding nodes MATCH (A)--(B:MOVIE)--(C:MOVIE)--(D) RETURN COUNT(A);

08 AddNodeLabel D Variant Add node label to existing node MATCH (A:USER)--(B:MOVIE) WHERE NOT A=B RETURN COUNT(A);
09 AddEdgeType D Variant Add edge type to existing edge MATCH (A:USER)-[R:RATED]-(B:MOVIE) RETURN COUNT(A);

10 MoveLabelPredicate QD Equivalent Move node label to the predicate MATCH (A:&SER)--(B:MOVIE) WHERE A:USER RETURN COUNT(A);
11 CountIdProperty O Equivalent Count the node id property MATCH (A:USER)--(B:MOVIE)-->(C) RETURN COUNT(ID(A));

12 CountOtherName D Equivalent Count other name in the same path MATCH (A:USER)--(B:MOVIE)-->(C) RETURN COUNT(AC);

13 DisjointPredicate @) Equivalent Split predicate into disjoint parts MATCH (A) WHERE A.P>0 ANPWITH * WHERE A.Q>0 COUNT(A);
14 RedundantPredicate @) Equivalent Append alway-true condition to predicate MATCH (A:USER)—(B:MOVIE) WHERE NOT A=B RETURN COUNT(A);
15 RenameVariables O Equivalent Rename node or edge variables MATCH (AN)--(BM:MOVIE) WHERE AN:USER RETURN COUNT(AN);
16 AddCallWrapper @) Equivalent Return results by calling the function CALL { MATCH (A:USER) RETURN COUNT(A) AS X } RETURN X;

Effectiveness

Effectivenessin
discovering unknown
bugs in mature graph
database systems?

Logic Bugs Internal Errors
GDBMS Unconfirmed Confirmed Fixed Fixed Total
Neodj 0 0 2 3 5
RedisGraph 1 3 1 0 5
AgensGraph 0 0 3 0 3
Gremlin-DBs 6 0 0 0 6
Total 7 3 6 3 19

Effectiveness

Effectivenessin
discovering unknown
bugs in mature graph
database systems?

Logic Bug via Symmetric Pattern in RedisGraph

Logic Bugs Internal Errors
GDBMS Unconfirmed Confirmed Fixed Fixed Total
Neodj 0 0 2 3 5
RedisGraph 1 3 1 0 5
AgensGraph 0 0 3 0 3
Gremlin-DBs 6 0 0 0 6
Total 7 3 6 3 19

Q: MATCH (a:A)-[*1..2]1-(b:B) return count(1);
// Result: 204 Response Time: 0.76ms
QQC): MATCH (b:B)-[*1..2]-(a:A) return count(1);
// Result: 238 Response Time: 0.75ms

https://github.com/RedisGraph/RedisGraph/issues/2865

Graph Pattern: variable length patterns having
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop
expanding a path upon detecting a cycle.

https://github.com/RedisGraph/RedisGraph/issues/2865

Effectiveness

Logic Bugs Internal Errors
GDBMS Unconfirmed Confirmed Fixed Fixed Total
Effectiveness in §e°4j . 0 0 2 3 >
discovering unknown Xgee:s(éﬁf,h (1) 2 ; g g
bugs In mature graph Gremlin-DBs 6 0 0 0 6
database systems? Total 7 3 5 3 19

Logic Bug via Symmetric Pattern in RedisGraph

Q: MATCH (a:A)-[*1..2]1-(b:B) return count(1);

// Result: 204 Response Time: 0.76ms
QQC): MATCH (b:B)-[*1..2]-(a:A) return count(1);
// Result: 238 Response Time: 0.75ms

https://github.com/RedisGraph/RedisGraph/issues/2865

Graph Pattern: partition the pattern (a)->(b)
into two paths (a) and (a)->(b)

Fixed. Caused by columns not visible when
involving variable length edge

Graph Pattern: variable length patterns having
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop
expanding a path upon detecting a cycle.

Logic Bug via Pattern Partition in AgensGraph

Q: MATCH (a)-[*1..11->(b) RETURN count(a);
// Result: 100
: MATCH (a),(a)-[*1..1]1->(b) RETURN count(a);

// ERROR: column "a" does not exist

0®

https://github.com/bitnine-oss/agensgraph/issues/609

https://github.com/RedisGraph/RedisGraph/issues/2865
https://github.com/bitnine-oss/agensgraph/issues/609

Improvement via Graph Patterns

Q: MATCH (a)-[J-(a) RETURN count(a);

MATCH (a)-[]-(a) WHERE id(a)>=1.0 RETURN count(a);
MATCH (a)-[]-(a) WHERE NOT id(a)>=1.@ RETURN count(a);

MATCH (a)-[]1-(a) WHERE id(a)>=1.@ IS NULL RETURN count(a);

0®

// Base Query Result: 200
// (TLP-True) Result: 200
// (TLP-False) Result: 0

// (TLP-Null) Result: @

: MATCH (a)-[]1-(b) WHERE a=b RETURN count(a);

// (GraphGenie) Result: 16

.GDBMeter

We analyze fixed bugs found by us and use
GDBMeter’s approach to detect them.

Out of 9 bugs that are applicable to
Ternary Logic Partition, GDBMeter was
able to detect only 3 bugs.

10

Improvement via Graph Patterns

Q: MATCH (a)-[1-(a) RETURN count(a); .GDBMeter
// Base Query Result: 200

MATCH 5?)255;(? W';EEE iiia);;'e RETURN count(a); We analyze fixed bugs found by us and use

—lrue esu :)

MATCH (a)-[1-(a) WHERE NOT id(a)>=1.@ RETURN count(a); GDBMeter’s approach to det.eCt them.
// (TLP-False) Result: © Out of 9 bugs that are applicable to

MATCH (a)-[]1-(a) WHERE id(a)>=1.@ IS NULL RETURN count(a); Ternary Logic Partition’ GDBMeter was
// (TLP-Null) Result: o able to detect only 3 bugs.

Q®: MATCH (a)-[]-(b) WHERE a=b RETURN count(a);
// (GraphGenie) Result: 16

Non-GQT B Property-GQT B Structure-GQT

Non-GQT rules are 250

effective in finding bug-
inducing test cases while
using GQT rules
facilitates uncovering
more bug-inducing 50
cases in testing GDBMS. .

200

150

100

Bug-inducing Test Cases

100 200 300 400 500 600 700 800 1000

B
Finding Performance Issues

Graph Query Transformations:
We reuse transformations for logic bugs, then redesign the test oracles

Test Oracle (e.g. for equivalent mutated queries):

The difference of execution time should be less than the threshold T[=].

max(time(Q), time(Q=)) < min(time(Q), time(Q=)) x T—

(T[=] is customizable, we set it as 5x)

11

Finding Performance Issues

Graph Query Transformations:
We reuse transformations for logic bugs, then redesign the test oracles

Test Oracle (e.g. for equivalent mutated queries):

The difference of execution time should be less than the threshold T[=].

max(time(Q), time(Q—)) < min(time(Q), time(Q—)) X T—

(T[=] is customizable, we set it as 5x)

Performance Issues found in Neo4J

BugID Status Time(Q) Time(Q’) Developer Feedback

12973 Fixed 4642011ms 5984ms A fix will come with the next release

13034 Fixed 100ms 201384ms A fix will come with the next release

13010 Confirmed 77ms 12147ms Bad plan but low priority to optimize

12957 Confirmed 13933ms 22ms A suboptimal plan in old version

13003 Intended 165547ms 332ms Query plan is suboptimal but intended

13033 Intended 1402ms 16585ms Inaccurate estimated rows and bad plan ”

Thank You!

Check Our Paper:
https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf

Try GraphGenie:

https://github.com/YuanchengJiang/GraphGenie

https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf
https://github.com/YuanchengJiang/GraphGenie

