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Graph Database Testing becomes essential to improve Robustness and Accuracy
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What is the effective test oracle for
discovering logic bugs when testing
graph database systems?
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In addition to mutating predicates like existing works, we
aim to mutate the graph patterns to generate new testing queries

a2 [ How to systematically mutate Graph Patterns? ]
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Graph Query Transformations (GQT)

@ Structure-GQT: mutations considering Graph patterns
(P Property-GQT: mutations considering Graph properties
(O Non-GQT: mutations on other parts of graph queries

ID Rule Name Class Type Transformation Example (In Cypher)

01 SymmetricPattern © Equivalent Replace graph pattern with a symmetric one MATCH (A:MOVIE)--(B:MOVIE) RETURN COUNT(AB);

02  UnfoldCyclicPattern () Equivalent Unfold cyclic pattern via adding predicate MATCH (A)--(B:MOVIE)--(CA) WHERE A=C RETURN COUNT(A);

03 PatternPartition () Equivalent Split graph pattern to disjoint sub-patterns ~ MATCH (A)-->(B:MOVIE), (B:MOVIE)-->(C) RETURN COUNT(A);

04 AddEdgeDirection () Variant Add edge direction to undirected edge MATCH (A)-->(B:MOVIE) WHERE B.YEAR=2012 RETURN COUNT(A);
05 SpanningSubgraph () Variant Spanning subgraph by deleting edges MATCH (A)-->(B:MOVIE)-->(C);{A)—>{€)} RETURN COUNT(A);

06 InducedSubgraph () Variant Induced subgraph by deleting vertices MATCH (A)--(B:MOVIE)--(C)—{B:A€TOR)} RETURN COUNT(A);

07 ExpandPattern © Variant Expand graph pattern by adding nodes MATCH (A)--(B:MOVIE)--(C:MOVIE)--(D) RETURN COUNT(A);

08 AddNodeLabel D Variant Add node label to existing node MATCH (A:USER)--(B:MOVIE) WHERE NOT A=B RETURN COUNT(A);
09 AddEdgeType D Variant Add edge type to existing edge MATCH (A:USER)-[ R:RATED ]-(B:MOVIE) RETURN COUNT(A);

10 MoveLabelPredicate QD Equivalent Move node label to the predicate MATCH (A:&SER)--(B:MOVIE) WHERE A:USER RETURN COUNT(A);
11 CountIdProperty O Equivalent Count the node id property MATCH (A:USER)--(B:MOVIE)-->(C) RETURN COUNT(ID(A));

12  CountOtherName D Equivalent Count other name in the same path MATCH (A:USER)--(B:MOVIE)-->(C) RETURN COUNT(AC);

13  DisjointPredicate @) Equivalent Split predicate into disjoint parts MATCH (A) WHERE A.P>0 ANPWITH * WHERE A.Q>0 COUNT(A);
14 RedundantPredicate @) Equivalent Append alway-true condition to predicate MATCH (A:USER)—(B:MOVIE) WHERE NOT A=B RETURN COUNT(A);
15 RenameVariables O Equivalent Rename node or edge variables MATCH (AN)--(BM:MOVIE) WHERE AN:USER RETURN COUNT(AN);
16 AddCallWrapper @) Equivalent Return results by calling the function CALL { MATCH (A:USER) RETURN COUNT(A) AS X } RETURN X;
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Effectivenessin
discovering unknown
bugs in mature graph
database systems?

Logic Bugs Internal Errors
GDBMS Unconfirmed Confirmed Fixed Fixed Total
Neodj 0 0 2 3 5
RedisGraph 1 3 1 0 5
AgensGraph 0 0 3 0 3
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Total 7 3 6 3 19




Effectiveness

Effectivenessin
discovering unknown
bugs in mature graph
database systems?
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Q: MATCH (a:A)-[*1..2]1-(b:B) return count(1);
// Result: 204 Response Time: 0.76ms
QQC): MATCH (b:B)-[*1..2]-(a:A) return count(1);
// Result: 238 Response Time: 0.75ms

https://github.com/RedisGraph/RedisGraph/issues/2865

Graph Pattern: variable length patterns having
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop
expanding a path upon detecting a cycle.
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discovering unknown Xgee:s(éﬁf,h (1) 2 ; g g
bugs In mature graph Gremlin-DBs 6 0 0 0 6
database systems? Total 7 3 5 3 19

Logic Bug via Symmetric Pattern in RedisGraph

Q: MATCH (a:A)-[*1..2]1-(b:B) return count(1);

// Result: 204 Response Time: 0.76ms
QQC): MATCH (b:B)-[*1..2]-(a:A) return count(1);
// Result: 238 Response Time: 0.75ms

https://github.com/RedisGraph/RedisGraph/issues/2865

Graph Pattern: partition the pattern (a)->(b)
into two paths (a) and (a)->(b)

Fixed. Caused by columns not visible when
involving variable length edge

Graph Pattern: variable length patterns having
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop
expanding a path upon detecting a cycle.

Logic Bug via Pattern Partition in AgensGraph

Q: MATCH (a)-[*1..11->(b) RETURN count(a);
// Result: 100
: MATCH (a),(a)-[*1..1]1->(b) RETURN count(a);

// ERROR: column "a" does not exist

0®

https://github.com/bitnine-oss/agensgraph/issues/609
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Improvement via Graph Patterns

Q: MATCH (a)-[J-(a) RETURN count(a);

MATCH (a)-[]-(a) WHERE id(a)>=1.0 RETURN count(a);
MATCH (a)-[]-(a) WHERE NOT id(a)>=1.@ RETURN count(a);

MATCH (a)-[]1-(a) WHERE id(a)>=1.@ IS NULL RETURN count(a);

0®

// Base Query Result: 200
// (TLP-True) Result: 200
// (TLP-False) Result: 0

// (TLP-Null) Result: @

: MATCH (a)-[]1-(b) WHERE a=b RETURN count(a);

// (GraphGenie) Result: 16

.GDBMeter

We analyze fixed bugs found by us and use
GDBMeter’s approach to detect them.

Out of 9 bugs that are applicable to
Ternary Logic Partition, GDBMeter was
able to detect only 3 bugs.

10




Improvement via Graph Patterns

Q: MATCH (a)-[1-(a) RETURN count(a); .GDBMeter
// Base Query Result: 200

MATCH 5?)255;(? W';EEE iiia);;'e RETURN count(a); We analyze fixed bugs found by us and use

—lrue esu : )

MATCH (a)-[1-(a) WHERE NOT id(a)>=1.@ RETURN count(a); GDBMeter’s approach to det.eCt them.
// (TLP-False) Result: © Out of 9 bugs that are applicable to

MATCH (a)-[]1-(a) WHERE id(a)>=1.@ IS NULL RETURN count(a); Ternary Logic Partition’ GDBMeter was
// (TLP-Null) Result: o able to detect only 3 bugs.

Q®: MATCH (a)-[]-(b) WHERE a=b RETURN count(a);
// (GraphGenie) Result: 16

Non-GQT B Property-GQT B Structure-GQT

Non-GQT rules are 250

effective in finding bug-
inducing test cases while
using GQT rules
facilitates uncovering
more bug-inducing 50
cases in testing GDBMS. .
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Finding Performance Issues

Graph Query Transformations:
We reuse transformations for logic bugs, then redesign the test oracles

Test Oracle (e.g. for equivalent mutated queries):

The difference of execution time should be less than the threshold T[=].

max(time(Q), time(Q=)) < min(time(Q), time(Q=)) x T—

(T[=] is customizable, we set it as 5x)
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Graph Query Transformations:
We reuse transformations for logic bugs, then redesign the test oracles

Test Oracle (e.g. for equivalent mutated queries):

The difference of execution time should be less than the threshold T[=].

max(time(Q), time(Q—)) < min(time(Q), time(Q—)) X T—

(T[=] is customizable, we set it as 5x)

Performance Issues found in Neo4J

BugID Status Time(Q) Time(Q’) Developer Feedback

12973 Fixed 4642011ms  5984ms A fix will come with the next release

13034 Fixed 100ms 201384ms A fix will come with the next release

13010 Confirmed 77ms 12147ms  Bad plan but low priority to optimize

12957 Confirmed 13933ms 22ms A suboptimal plan in old version

13003 Intended 165547ms  332ms Query plan is suboptimal but intended

13033 Intended 1402ms 16585ms  Inaccurate estimated rows and bad plan ”




Thank You!

Check Our Paper:
https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf

Try GraphGenie:

https://github.com/YuanchengJiang/GraphGenie
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