
Detecting Logic Bugs in Graph Database Management Systems
via Injective and Surjective Graph Query Transformations

Yuancheng Jiang, Jiahao Liu, Jinsheng Ba
Roland Yap, Zhenkai Liang, Manuel Rigger

Database Systems: Relational vs. Graph

1

Relational Data Model
StudentId CourseId

001 1

001 2

001 3

002 3

002 4

ID Name

001 Sam

002 Mary

003 Tine

004 Jay

StudentCourses

Students
ID Name

1 SQL Server

2 ASP.NET

3 MongoDB

4 Java

Courses

5 PHP
… …

Database Systems: Relational vs. Graph

1

Relational Data Model
StudentId CourseId

001 1

001 2

001 3

002 3

002 4

ID Name

001 Sam

002 Mary

003 Tine

004 Jay

StudentCourses

Students
ID Name

1 SQL Server

2 ASP.NET

3 MongoDB

4 Java

Courses

5 PHP

Graph Data Model

… …

The Fastest Growing Model in Past Decade*

2*: Statistics collected at db-rank: https://db-engines.com/en/ranking_categories

https://db-engines.com/en/ranking_categories

The Fastest Growing Model in Past Decade*

2

Graph Database Testing becomes essential to improve Robustness and Accuracy
*: Statistics collected at db-rank: https://db-engines.com/en/ranking_categories

https://db-engines.com/en/ranking_categories

Bug Categories in Database Testing

3

Internal Errors (Crash): out of service (segfault, unexpected exception)
● Oracle: sanitizers, unexpected exception handlers
● Difficulty: low (users can help to submit issues when noticed)

Bug Categories in Database Testing

3

Internal Errors (Crash): out of service (segfault, unexpected exception)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

● Oracle: sanitizers, unexpected exception handlers
● Difficulty: low (users can help to submit issues when noticed)

● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (logic bugs often go unnoticed by users without alerts)

Bug Categories in Database Testing

3

Internal Errors (Crash): out of service (segfault, unexpected exception)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

● Oracle: sanitizers, unexpected exception handlers
● Difficulty: low (users can help to submit issues when noticed)

● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (logic bugs often go unnoticed by users without alerts)

Performance Issues: unreasonable query computing time
● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (hard to discover performance issues without references)

Bug Categories in Database Testing

3

Internal Errors (Crash): out of service (segfault, unexpected exception)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

● Oracle: sanitizers, unexpected exception handlers
● Difficulty: low (users can help to submit issues when noticed)

● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (logic bugs often go unnoticed by users without alerts)

Performance Issues: unreasonable query computing time
● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (hard to discover performance issues without references)

Bug Categories in Database Testing

3

Internal Errors (Crash): out of service (segfault, unexpected exception)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

● Oracle: sanitizers, unexpected exception handlers
● Difficulty: low (users can help to submit issues when noticed)

● test approaches: differential or metamorphic testing
● Difficulty: high (logic bugs often go unnoticed by users without alerts)

Performance Issues: unreasonable query computing time
● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (hard to discover performance issues without references)

What is the effective test oracle for
discovering logic bugs when testing

graph database systems?

Existing Approaches

4

Grand (ISSTA’22): differential testing on Gremlin graph databases

Existing Approaches

4

Grand (ISSTA’22): differential testing on Gremlin graph databases
high false alarm rate

Essential Semantic Difference

RedisGraph

Neo4J
foo(id, name)

1

1.0

Existing Approaches

4

Grand (ISSTA’22): differential testing on Gremlin graph databases
high false alarm rate

Graph System
Codebase

TinkerPop

JanusGraph

HugeGraph

Shared CodebaseEssential Semantic Difference

RedisGraph

Neo4J
foo(id, name)

1

many missed bugs

1.0

Existing Approaches

4

Grand (ISSTA’22): differential testing on Gremlin graph databases

Cypher, Gremlin are the top two
popular graph query languages

high false alarm rate

Graph System
Codebase

TinkerPop

JanusGraph

HugeGraph

Shared CodebaseEssential Semantic Difference

RedisGraph

Neo4J
foo(id, name)

1

many missed bugs Cypher not supported

1.0

Existing Approaches

4

GDBMeter (ISSTA’23): metamorphic testing (TLP*)

*: Ternary Logic Partitioning (TLP) splits predicate P into three possible outcomes: True, False, or Null.

Grand (ISSTA’22): differential testing on Gremlin graph databases

Cypher, Gremlin are the top two
popular graph query languages

high false alarm rate

Graph System
Codebase

TinkerPop

JanusGraph

HugeGraph

Shared CodebaseEssential Semantic Difference

RedisGraph

Neo4J
foo(id, name)

1

many missed bugs Cypher not supported

1.0

● focus on mutating predicates (constraints)

Existing Approaches

4

GDBMeter (ISSTA’23): metamorphic testing (TLP*)

*: Ternary Logic Partitioning (TLP) splits predicate P into three possible outcomes: True, False, or Null.

Grand (ISSTA’22): differential testing on Gremlin graph databases

Cypher, Gremlin are the top two
popular graph query languages

high false alarm rate

Graph System
Codebase

TinkerPop

JanusGraph

HugeGraph

Shared CodebaseEssential Semantic Difference

RedisGraph

Neo4J
foo(id, name)

1

many missed bugs Cypher not supported

shows limited effectiveness (most bugs are NOT related to Graph)

1.0

● focus on mutating predicates (constraints)

Existing Approaches

4

GDBMeter (ISSTA’23): metamorphic testing (TLP*)

*: Ternary Logic Partitioning (TLP) splits predicate P into three possible outcomes: True, False, or Null.

Grand (ISSTA’22): differential testing on Gremlin graph databases

Cypher, Gremlin are the top two
popular graph query languages

high false alarm rate

Graph System
Codebase

TinkerPop

JanusGraph

HugeGraph

Shared CodebaseEssential Semantic Difference

RedisGraph

Neo4J
foo(id, name)

1

many missed bugs Cypher not supported

shows limited effectiveness (most bugs are NOT related to Graph)

1.0

● focus on mutating predicates (constraints)

Why? Have we considered all features in graph queries?

Consider Graph When Testing Graph
MATCH (a:Movie)--(b)--(c)

WHERE a.year=2012
RETURN count(a) LIMIT 1

5

Consider Graph When Testing Graph
MATCH (a:Movie)--(b)--(c)

WHERE a.year=2012
RETURN count(a) LIMIT 1

Graph Query: graph patterns + predicates + others Additional Constraints
in Graph Queries

5

(must-have unit representing the look-like of fetched data)

Consider Graph When Testing Graph
MATCH (a:Movie)--(b)--(c)

WHERE a.year=2012
RETURN count(a) LIMIT 1

Graph Query: graph patterns + predicates + others

aim to mutate the graph patterns to generate new testing queries
In addition to mutating predicates like existing works, we

Additional Constraints
in Graph Queries

5

(must-have unit representing the look-like of fetched data)

Consider Graph When Testing Graph
MATCH (a:Movie)--(b)--(c)

WHERE a.year=2012
RETURN count(a) LIMIT 1

Graph Query: graph patterns + predicates + others

aim to mutate the graph patterns to generate new testing queries
In addition to mutating predicates like existing works, we

(a)--(b)--(c)

Additional Constraints
in Graph Queries

5

How to systematically mutate Graph Patterns?

(must-have unit representing the look-like of fetched data)

？

From Graph to Directed Edge Sets
(:Actor) (:Movie)-[:ACTED_IN]->

(:User) (:Movie)-[:RATED]->

(:User) (:Actor)-[:RATED]->

Directed Edge Sets: edges with their heads, tails, and edges information

6

From Graph to Directed Edge Sets
(:Actor) (:Movie)-[:ACTED_IN]->

(:User) (:Movie)-[:RATED]->

(:User) (:Actor)-[:RATED]->

6

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation Graph Pattern Mutation Sets Mapping

From Graph to Directed Edge Sets
(:Actor) (:Movie)-[:ACTED_IN]->

(:User) (:Movie)-[:RATED]->

(:User) (:Actor)-[:RATED]->

Injective MappingRestricted Pattern MutationRestricted Query Mutation

Match (:A)->(:B)->(:C)
Return Count()

???

A B C

B C

A B A B

B C

:x

A B
:!x

:x

6

???

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation Graph Pattern Mutation Sets Mapping

From Graph to Directed Edge Sets
(:Actor) (:Movie)-[:ACTED_IN]->

(:User) (:Movie)-[:RATED]->

(:User) (:Actor)-[:RATED]->

Injective MappingRestricted Pattern MutationRestricted Query Mutation

Match (:A)->(:B)->(:C)
Return Count()

???

A B C

A B C
:x

B C

A B A B

B C

:x

A B
:!x

:x

6

Directed Edge Sets: edges with their heads, tails, and edges information

Graph Query Mutation Graph Pattern Mutation Sets Mapping

From Graph to Directed Edge Sets
(:Actor) (:Movie)-[:ACTED_IN]->

(:User) (:Movie)-[:RATED]->

(:User) (:Actor)-[:RATED]->

Injective MappingRestricted Pattern MutationRestricted Query Mutation

Graph Query Mutation Graph Pattern Mutation Sets Mapping

Match (:A)->(:B)->(:C)
Return Count()

Match (:A)-[:x]->(:B)
->(:C) Return Count()

A B C

A B C
:x

B C

A B A B

B C

:x

A B
:!x

:x

6

Directed Edge Sets: edges with their heads, tails, and edges information

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

7

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

test oracle!

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

https://github.com/YuanchengJiang/GraphGenie

first metamorphic testing approach considering graph pattern mutations

*: GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

GraphGenie*:

Testing Process: (1) Query Generation (2) Query Mutation (3) Result Analysis

● Query Generation: focus on Cypher, diverse in graph patterns, incremental
● Transformation Combinations: helps to generate more complex graph queries

7

https://github.com/YuanchengJiang/GraphGenie

Graph Query Transformations (GQT)
1. Structure-GQT: mutations considering Graph patterns
2. Property-GQT: mutations considering Graph properties
3. Non-GQT: mutations on other parts of graph queries

8

Effectiveness
Effectiveness in
discovering unknown
bugs in mature graph
database systems?

9

Effectiveness
Effectiveness in
discovering unknown
bugs in mature graph
database systems?

Logic Bug via Symmetric Pattern in RedisGraph Graph Pattern: variable length patterns having
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop
expanding a path upon detecting a cycle.

https://github.com/RedisGraph/RedisGraph/issues/2865

9

https://github.com/RedisGraph/RedisGraph/issues/2865

Effectiveness
Effectiveness in
discovering unknown
bugs in mature graph
database systems?

Logic Bug via Symmetric Pattern in RedisGraph

Logic Bug via Pattern Partition in AgensGraph

Graph Pattern: variable length patterns having
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop
expanding a path upon detecting a cycle.

https://github.com/RedisGraph/RedisGraph/issues/2865

https://github.com/bitnine-oss/agensgraph/issues/609

Graph Pattern: partition the pattern (a)->(b)
into two paths (a) and (a)->(b)

Fixed. Caused by columns not visible when
involving variable length edge

9

https://github.com/RedisGraph/RedisGraph/issues/2865
https://github.com/bitnine-oss/agensgraph/issues/609

Improvement via Graph Patterns

We analyze fixed bugs found by us and use
GDBMeter’s approach to detect them.
Out of 9 bugs that are applicable to
Ternary Logic Partition, GDBMeter was
able to detect only 3 bugs.

10

Improvement via Graph Patterns

Non-GQT rules are
effective in finding bug-
inducing test cases while
using GQT rules
facilitates uncovering
more bug-inducing
cases in testing GDBMS.

We analyze fixed bugs found by us and use
GDBMeter’s approach to detect them.
Out of 9 bugs that are applicable to
Ternary Logic Partition, GDBMeter was
able to detect only 3 bugs.

10

We reuse transformations for logic bugs, then redesign the test oracles

The difference of execution time should be less than the threshold T[=].

(T[=] is customizable, we set it as 5x)

Finding Performance Issues

11

Test Oracle (e.g. for equivalent mutated queries):

Graph Query Transformations:

We reuse transformations for logic bugs, then redesign the test oracles

The difference of execution time should be less than the threshold T[=].

(T[=] is customizable, we set it as 5x)

Finding Performance Issues

Performance Issues found in Neo4J

Test Oracle (e.g. for equivalent mutated queries):

Graph Query Transformations:

11

Thank You!
Check Our Paper:

https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf

Try GraphGenie:
https://github.com/YuanchengJiang/GraphGenie

https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf
https://github.com/YuanchengJiang/GraphGenie

