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Graph Database Testing becomes essential to improve Robustness and Accuracy
*: Statistics collected at db-rank: https://db-engines.com/en/ranking_categories

https://db-engines.com/en/ranking_categories
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Bug Categories in Database Testing

3

Internal Errors (Crash): out of service (segfault, unexpected exception)

Logic Bugs: outputs incorrect results (wrong count, inaccurate data)

● Oracle: sanitizers, unexpected exception handlers
● Difficulty: low (users can help to submit issues when noticed)

● test approaches: differential or metamorphic testing
● Difficulty: high (logic bugs often go unnoticed by users without alerts)

Performance Issues: unreasonable query computing time
● Oracle: test oracles like differential or metamorphic testing
● Difficulty: high (hard to discover performance issues without references)

What is the effective test oracle for 
discovering logic bugs when testing 

graph database systems?
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● focus on mutating predicates (constraints)

Why? Have we considered all features in graph queries?
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Consider Graph When Testing Graph
MATCH (a:Movie)--(b)--(c)

WHERE a.year=2012
RETURN count(a) LIMIT 1

Graph Query: graph patterns + predicates + others

aim to mutate the graph patterns to generate new testing queries
In addition to mutating predicates like existing works, we

(a)--(b)--(c)

Additional Constraints 
in Graph Queries

5

How to systematically mutate Graph Patterns?

(must-have unit representing the look-like of fetched data)

？
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Directed Edge Sets: edges with their heads, tails, and edges information
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Graph Query Transformations (GQT)
1. Structure-GQT: mutations considering Graph patterns
2. Property-GQT: mutations considering Graph properties 
3. Non-GQT: mutations on other parts of graph queries
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Effectiveness
Effectiveness in  
discovering unknown 
bugs in mature graph 
database systems?

Logic Bug via Symmetric Pattern in RedisGraph

Logic Bug via Pattern Partition in AgensGraph 

Graph Pattern: variable length patterns having 
endpoints with (a:A) and (b:B)

Fixed. Caused by incorrect logic to stop 
expanding a path upon detecting a cycle.

https://github.com/RedisGraph/RedisGraph/issues/2865

https://github.com/bitnine-oss/agensgraph/issues/609

Graph Pattern: partition the pattern (a)->(b) 
into two paths (a) and (a)->(b)

Fixed. Caused by columns not visible when 
involving variable length edge
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https://github.com/RedisGraph/RedisGraph/issues/2865
https://github.com/bitnine-oss/agensgraph/issues/609
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Improvement via Graph Patterns

Non-GQT rules are 
effective in finding bug-
inducing test cases while 
using GQT rules 
facilitates uncovering 
more bug-inducing 
cases in testing GDBMS. 

We analyze fixed bugs found by us and use 
GDBMeter’s approach to detect them. 
Out of 9 bugs that are applicable to 
Ternary Logic Partition, GDBMeter was 
able to detect only 3 bugs.
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We reuse transformations for logic bugs, then redesign the test oracles

The difference of execution time should be less than the threshold T[=].

(T[=] is customizable, we set it as 5x)

Finding Performance Issues
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We reuse transformations for logic bugs, then redesign the test oracles

The difference of execution time should be less than the threshold T[=].

(T[=] is customizable, we set it as 5x)

Finding Performance Issues

Performance Issues found in Neo4J

Test Oracle (e.g. for equivalent mutated queries):

Graph Query Transformations:
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Thank You!
Check Our Paper:

https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf

Try GraphGenie:  
https://github.com/YuanchengJiang/GraphGenie

https://yuanchengjiang.github.io/docs/GraphGenie-ICSE24.pdf
https://github.com/YuanchengJiang/GraphGenie

