
Detecting Logic Bugs in Graph Database Management Systems
via Injective and Surjective GraphQuery Transformation

Yuancheng Jiang
National University of Singapore

Singapore
yuancheng@comp.nus.edu.sg

Jiahao Liu
National University of Singapore

Singapore
jiahao99@comp.nus.edu.sg

Jinsheng Ba
National University of Singapore

Singapore
bajinsheng@u.nus.edu

Roland H.C. Yap
National University of Singapore

Singapore
ryap@comp.nus.edu.sg

Zhenkai Liang
National University of Singapore

Singapore
liangzk@comp.nus.edu.sg

Manuel Rigger
National University of Singapore

Singapore
rigger@nus.edu.sg

Abstract

Graph Database Management Systems (GDBMSs) store graphs as
data. They are used naturally in applications such as social net-
works, recommendation systems and program analysis. However,
they can be affected by logic bugs, which cause the GDBMSs to
compute incorrect results and subsequently affect the applications
relying on them. In this work, we propose injective and surjec-
tive Graph Query Transformation (GQT) to detect logic bugs in
GDBMSs. Given a query 𝑄 , we derive a mutated query 𝑄 ′, so that
either their result sets are: (i) semantically equivalent; or (ii) variant
based on the mutation to be either a subset or superset of each other.
When the expected relationship between the results does not hold,
a logic bug in the GDBMS is detected. The key insight to mutate 𝑄
is that the graph pattern in graph queries enables systematic query
transformations derived from injective and surjective mappings of
the directed edge sets between𝑄 and𝑄 ′. We implemented injective
and surjective Graph Query Transformation (GQT) as a tool called
GraphGenie and evaluated it on 6 popular and mature GDBMSs.
GraphGenie has found 25 unknown bugs, comprising 16 logic bugs,
3 internal errors, and 6 performance issues. Our results demon-
strate the practicality and effectiveness of GraphGenie in detecting
logic bugs in GDBMSs which has the potential for improving the
reliability of applications relying on these GDBMSs.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy→ Database and storage security.

Keywords

Graph Databases, Logic Bugs, Metamorphic Testing
ACM Reference Format:

Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang,
and Manuel Rigger. 2024. Detecting Logic Bugs in Graph Database Manage-
ment Systems via Injective and Surjective Graph Query Transformation. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623307

2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE

’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3597503.3623307

1 Introduction

Graph Database Management Systems (GDBMSs) [2] are designed
for storing and querying graph data. They have been rapidly gain-
ing popularity and are becoming increasingly prevalent in various
domains. Specifically, GDBMSs operate on vertices and edges as
data to support graph storing and matching, which greatly facili-
tates the usability and efficiency of many applications like social
networks [16, 51], recommendation systems [3, 40, 54], and pro-
gram analysis [28, 29, 52]. According to graph database market
statistics [32], the global market size of graph database valued at
USD 2.9 billion in 2023 is expected to grow to USD 7.3 billion by
2028 at a compound annual growth rate of 20.2%. This upward trend
is driven by many factors, including the rising demand for online
schema environments and the real-time big data mining.

Given that GDBMSs are complex software systems with com-
plex algorithms, they are susceptible to logic bugs—resulting in an
incorrect result for a given query. Unlike crash bugs, logic bugs
in GDBMSs can silently compute incorrect results, which often go
unnoticed by both users and developers, making it difficult to fix
such bugs. For example, the AgensGraph [7] GDBMS had a logic
bug1 that produced wrong results when counting nodes with a
cyclic path (e.g., match (n)-[]-(n) return count(n)), which was
introduced by a previous patch to remove unnecessary joins but
forgot to consider self-joins.

Automatically detecting logic bugs in GDBMSs is challenging
due to the difficulties in establishing an effective test oracle, which
is a mechanism for determining whether a test case has passed or
failed [6]. One approach is to use differential testing [27, 55] to com-
pare the results from different GDBMSs, and any discrepancy in the
results suggests a potential bug. However, we have observed that
even the most basic queries like match ()-[r]-() return count(r)
can yield different results in different GDBMSs (e.g., Neo4j [37] and
MemGraph [34]), due to inconsistent but intended designs, leading
to false alarms in differential testing. Another approach is to lever-
age metamorphic testing to generate mutated graph queries and
validate that their results adhere to a prior expectation. In GDBMSs,

1https://github.com/bitnine-oss/agensgraph/issues/595

https://doi.org/10.1145/3597503.3623307
https://doi.org/10.1145/3597503.3623307
https://github.com/bitnine-oss/agensgraph/issues/595

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang, and Manuel Rigger

Listing 1: Logic Bug We Found in RedisGraph

𝑄: MATCH (s1:B)-[*1..2]-(s3:A) RETURN count(s1);
// Result: 204 Response Time: 0.76ms

𝑄 =○: MATCH (s3:A)-[*1..2]-(s1:B) RETURN count(s1);
// Result: 238 Response Time: 0.75ms

the only existing work [22] is based on Predicate Partitioning [42],
which aims to generate three disjoint subset queries via Ternary
Logic Partitioning [43]. While Predicate Partitioning has been suc-
cessful in uncovering many bugs in GDBMSs, it is limited to testing
the correct handling of the predicate portion of the graph query,
ignoring the more important graph patterns part of graph queries.
Compared to the Predicate, the graph query pattern (e.g., (n)-[]-(n)
or ()-[r]-()), which we call G-Pattern, is the essential component of
graph queries. We recognize the importance of the G-Pattern and
are motivated to explore novel solutions to improve the limitations
of existing works on GDBMS.

In this work, we present a new testing approach called injective
and surjective Graph Query Transformation (GQT) to effectively
detect logic bugs in GDBMSs. The central idea behind our approach
is that G-Pattern in graph queries allows for generating follow-up
queries via systematic query transformations derived from injec-
tive and surjective mappings among directed edge sets of G-Pattern.
Follow-up queries are designed to compute results that relate to the
initial queries’ results in a specific way, and any discrepancy indi-
cates a logic bug. Our approach considers two classes of G-Pattern
mappings of directed edge sets, that is, (1) bijective mappings and
(2) injective-only or surjective-only mappings. Using the bijective
edge mappings, we generate a follow-up query𝑄 ′ based on a query
𝑄 such that 𝑅𝑆 (𝑄 ′)=𝑅𝑆 (𝑄), which means their results are equal.
To derive the follow-up query 𝑄 ′, we introduce an operator =○
that randomly applies a query equivalent transformation. Simi-
larly, using the injective-only or surjective-only edge mappings,
we generate a follow-up query 𝑄 ′ based on a query 𝑄 such that
𝑅𝑆 (𝑄 ′) ⊇ 𝑅𝑆 (𝑄) or 𝑅𝑆 (𝑄 ′) ⊆ 𝑅𝑆 (𝑄), which means the follow-up
query has larger or smaller result (at least equal) than the base
query. To derive such comparative relations, we introduce variant
operators >○ and <○ that randomly apply a query generalization
or restriction transformation. Our approach creates graph query
transformations based on the injective and surjective directed edge
mappings for three operators (i.e., =○, >○, and <○), which we use to
generate test cases from a base query.

Listing 1 demonstrates one logic bug2 we found using GQT in
RedisGraph [39]. The bug-inducing test case consists of one base
query 𝑄 and one of its equivalent queries 𝑄 =○ constructed by mu-
tating the graph pattern. The graph pattern in the mutated query is
represented in the opposite order preserving the bijective mapping
between directed edge sets, which allows for an alternative query
giving the same result. As the pair of semantically equivalent unex-
pectedly output inconsistent results, we identified a logic bug in
RedisGraph, which was acknowledged and fixed by the developers.

To assess the effectiveness of our technique, we implemented
it as a tool called GraphGenie, which supports two popular graph
query languages (Cypher and Gremlin). We tested GraphGenie in

2https://github.com/RedisGraph/RedisGraph/issues/2865

:Actor :User

:Movie
:ACTED_IN :RATED

:RATED

Role: Alice Rate: 4.5

Rate: 4.7

Name: John
Born: 1966

Name: Tom
Id: 000116

Figure 1: Example of Labeled Property Graph Model

six mature GDBMSs: Neo4j [37], RedisGraph [39], AgensGraph [7],
TinkerPop [4], JanusGraph [19], and HugeGraph [18]. We discov-
ered a total of 25 previous unknown bugs consisting of 16 logic
bugs (6 fixed and 3 confirmed), 3 internal errors (all fixed), and 6
performance issues (all received positive feedback). Furthermore,
we compared GraphGenie with two state-of-the-art approaches
based on differential testing [33] and query partitioning [42], im-
plemented as tools named Grand [55] and GDBMeter [22]. In com-
parison to Grand, which we found to have a false alarm rate of over
80%, our proposed approach is free of false alarms. In comparison
to GDBMeter, our approach allowed us to identify 6 logic bugs
that GDBMeter was unable to find. We believe that our results are
encouraging, suggesting that GraphGenie might become a practical
tool for testing GDBMSs.

In summary, we make the following contributions:
• We propose injective and surjective Graph Query Transformation
(GQT), a novel and effective approach for identifying logic bugs
in GDBMSs. It creates scalable graph transformations on common
query elements, generates follow-up queries based on directed
edge mappings among G-Pattern, using three operators (i.e., =○,
>○, <○) to create test oracles to uncover logic bugs.

• We have developed a practical tool called GraphGenie3 based on
our approach. This tool is capable of generating valid base queries,
combining rules to generate mutated queries, and identifying
logic bugs without any false alarms and supports the top two
graph query languages.

• GraphGenie has found various logic bugs in mature GDBMSs.
Specifically, we discovered a total of 25 previous unknown bugs,
including 16 logic bugs with 6 fixed and 3 confirmed. In addition,
GraphGenie also uncovered several internal errors and severe
performance issues. GraphGenie’s bug reports were positively
received and acknowledged by the developers.

2 Background

Graph Database Management System. Graph Database Man-
agement Systems (GDBMSs) use various graph models for data
representation. This paper focuses on testing the labeled property
graph model shown in Figure 1—the most widely used model in
GDBMSs such as Neo4j [37], RedisGraph [39], and TinkerPop [4].
These state-of-the-art GDBMSs are large and complex (e.g., more
than one million Lines of Code (LoC) in the latest release of Neo4j).

Graph Query Language. Graph query languages (e.g.,
Cypher [35] and Gremlin [47]) are used to interact with GDBMSs.
We mainly illustrate our approach in the Cypher query language. A
graph query in Cypher consists of the following elements: (i)Match

specifies that a graph pattern needs to be matched (in this paper, we
do not deal with add, delete and update queries); (ii) graph pattern,

3GraphGenie is available at https://github.com/YuanchengJiang/GraphGenie

https://github.com/RedisGraph/RedisGraph/issues/2865
https://github.com/YuanchengJiang/GraphGenie

Detecting Logic Bugs in Graph Database Management Systems via Injective and Surjective GraphQuery Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

MATCH	(a:Movie)-[]-(b)

g.V().as('a').hasLabel('Movie').has('year',eq(2012))

M

M

G

G

G

P

P

R

R

O

O

M:	Match				
G:	G-Pattern				
P:	Predicate								
R:	Return				
O:	Other												

.bothE().dedup().by(__.path()).otherV().select('a').count().limit(1)

WHERE	a.year=2012	RETURN	count(a)	LIMIT	1
Cypher:

Gremlin:

Figure 2: Graph Query Elements

which we call G-Pattern, specifies the pattern to be matched with
nodes and edges; (iii) Predicate specifies a filtering condition on the
edges matching the query and typically node and edge labels and
properties are used; (iv) Return specifies the result and can include
aggregation functions such as count(); and (v) Others specifies
addition constraints on the result set such as order by, limit, and
skip. In a query, nodes are written as (var:label) and edges are
written as [var:type]. The var represents an optional variable for
nodes and edges, which can have a set of labels/types associated
with it. Nodes and edges are connected via hyphens (-) and arrows
that indicate the edge directions (> or <). To match a general graph
pattern, Cypher allows nodes and edges to be represented without
variable names and labels (e.g., () and []). Cypher also allows for
more complex graph patterns whose length is variable (e.g., [*1..2]
matches graph patterns with the edge length from 1 to 2).

Various graph query languages differ in their syntax and se-
mantics. Figure 2 shows equivalent queries written in Cypher and
Gremlin. However, they typically share common graph query com-
ponents that provide common functionality. Thus, query transfor-
mations can be designed to be general to support testing various
graph query languages.

Injection, Surjection, and Bijection. Injections, surjections,
and bijections [50] relate how functions map their domain (function
argument) to the co-domain (function result). In an injection, it
indicates that the function is a one-to-one mapping, that is, each
element of the codomain is mapped to by at most one element of the
domain. Surjection indicates the mapping as “onto”, if each element
of the codomain is mapped to by at least one element of the domain.
Bijection is a function that is both injective and subjective.

3 Graph Pattern Mapping

To facilitate the systematic testing of GDBMSs, we find inspiration
from injection, surjection, and bijection concepts. In this context,
we consider the base query𝑄 as the domain and the mutated query
𝑄 ′ as the co-domain. Next, we explain howwe utilize these concepts
to guide the mutation of graph patterns within graph queries.

Graph queries are used to retrieve certain graph patterns from
the GDBMSs. Graph patterns represent the data to be retrieved as
nodes and edges, which we call G-Pattern. As previous works have
investigated testing based on the Predicate in the where clause,

A B

B C

C D

B C

C D

A B

Bijective	Mapping

A B

B C

C D

B C

C D

A B

Injective-only	Mapping

A B

B C

C A

B C

C A

A B

Surjective-only	Mapping

D A D A

Figure 3: Bijection, Injection, Surjection in Directed Edge Sets

A

B

C

Symmetric	G-Pattern Cyclic	G-Pattern Split	G-Pattern

G-Pattern	SubGraph

C

B

A A

B

C A

B

C A

B

B

C

A

B

C

G-Pattern	Directness Expanded	G-Pattern

A

B

C

A

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C A

B

C

Figure 4: Examples of Graph Pattern Mappings

we propose new testing solutions based on G-Pattern, which is one
of the essential elements of graph queries. We convert G-Pattern
to directed edge sets𝐺𝑃={−→𝑒1, . . . ,−→𝑒𝑖 , . . . ,−→𝑒𝑁 },−→𝑒𝑖 =(𝜇, 𝜈) where 𝑁 is
the number of directed edges in G-Pattern and 𝜇,𝜈 are start and
end nodes. An undirected edge 𝑒𝑖 in a G-Pattern is turned into two
oppositely directed edges (i.e., (𝜇, 𝜈) and (𝜈, 𝜇)), and we use the
shorthand

−→
𝐴𝐵 to represent a directed edge with start node 𝐴 and

end node 𝐵.
Figure 3 demonstrates bijection, injection, and surjection map-

pings between two directed edge sets. For example, the injective-
only mapping in Figure 3 represent the mappings between two
graph patterns (𝐺𝑃1 (a)-->(b)-->(c)-->(d) and𝐺𝑃2 (a)-->(b)-->(c)--
>(d)-->(a)): every directed edge in 𝐺𝑃1 is mapped to 𝐺𝑃2 but un-
matched edge exists in 𝐺𝑃2 (non-surjective). We categorize the G-
Pattern relationship into three classes (i.e., equivalence, restriction,
and generalization) by judging the mapping (i.e., 𝑓 : 𝐺𝑃1 ↦→ 𝐺𝑃2)
between their directed edge sets.

G-Pattern Equivalence (=) is a bijective mapping between two
sets of directed edges from two G-Patterns in graph queries. This
means that every edge in 𝐺𝑃1 corresponds to a unique and match-
ing edge in 𝐺𝑃2, and no edge is left unmatched, making the two
G-Patterns equivalent. Examples of G-Pattern equivalence include
symmetric G-Pattern, cyclic G-Pattern, and split G-Pattern as shown
in Figure 4. Specifically, the symmetric G-Pattern hold the same
directed edge sets with a different order (e.g., 𝐺𝑃1={

−→
𝐴𝐵,

−→
𝐵𝐶} and

𝐺𝑃2={
−→
𝐵𝐶,

−→
𝐴𝐵}); the cyclic G-Pattern share one equivalent back-

ward edge (e.g.,𝐺𝑃1={
−→
𝐴𝐵,

−→
𝐵𝐶,

−→
𝐶𝐴} and𝐺𝑃2={

−→
𝐴𝐵,

−→
𝐵𝐶,

−−→
𝐶𝐷} where

𝐴=𝐷); the split G-Pattern divides edge sets into disjoint subsets
(e.g., 𝐺𝑃1={

−→
𝐴𝐵,

−→
𝐵𝐶} and 𝐺𝑃2={{

−→
𝐴𝐵} ∪ {−→𝐵𝐶}}). To summarize, G-

Pattern equivalence alters the directed edge set while preserving
the bijective mapping.

G-Pattern Restriction (≤) is a mapping between two sets of edges
that is surjective-only and non-injective. This means that not ev-
ery edge in G-Pattern 𝐺𝑃1 maps to G-Pattern 𝐺𝑃2. Examples of
G-Pattern restriction include directed G-Pattern and subgraph G-

Pattern as shown in Figure 4. Specifically, the G-Pattern direct-
ness alters the undirected G-Pattern by deleting one direction (e.g.,
𝐺𝑃1={

−→
𝐴𝐵,

−→
𝐵𝐴,

−→
𝐵𝐶,

−→
𝐶𝐵} and𝐺𝑃2={

−→
𝐴𝐵,

−→
𝐵𝐶}); theG-Pattern subgraph

could be generated via the spanning subgraph by deleting edges
or the induced subgraph by deleting nodes with a subset directed
edge set (e.g., 𝐺𝑃1={

−→
𝐴𝐵,

−→
𝐵𝐶,

−−→
𝐶𝐷,

−→
𝐴𝐶,

−−→
𝐷𝐵} and 𝐺𝑃2={

−→
𝐴𝐵,

−→
𝐵𝐶,

−−→
𝐶𝐷}).

G-Pattern restriction alters the directed edge set into the subset
losing the injection but preserving the surjective mapping.

G-Pattern Generalization (≥) is a mapping between two sets
of edges that is injective-only and non-surjective. Examples of
G-Pattern generalization are the reverse operations of G-Pattern

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang, and Manuel Rigger

Base	Query:	MATCH	(a:User)-[b]->(c:Movie)	WHERE	c.year=2012	RETURN	count(a);

MATCH	(c:Movie)<-[b]-(a:User)	WHERE	c.year=2012	RETURN	count(a);

MATCH	(a:User)-[b:Rated]->(c:Movie)	WHERE	c.year=2012	RETURN	count(a);

MATCH	(a:User)-[b]->(c:Movie)	WHERE	c.year=2012	AND	b:Rated RETURN	count(a);

A B C C B A=(=)	Transformation:	SymmetricPattern

(<)	Transformation:	AddEdgeType

(=*)	Transformation:	MoveLabelPredicate

<A B C A B C

=A C A B C &	B:L

Note:	(=)	indicates	bijective	rule,	(<)	indicates	surjective-only	rule,	(*)	indicates	rules	combination	 Graph	Database

Result:	310
(v)

(v)	indicates	bug	validation

[:T][:T]
Result:	620

Result:	288

Result:	252
(v)

620	=	310?

288	<	310?

252	<	310?
252	=	288?

B:L

Figure 5: Overview of Injective and Surjective Graph Query Transformation

restriction (e.g., expanded G-Pattern in Figure 4), and G-Pattern

generalization alters the directed edge set into the superset losing
the subjection but preserving the injective mapping.

4 Approach

To detect logic bugs in GDBMSs, we propose injective and surjective
Graph Query Transformation (GQT), allowing mutation of graph
queries in a way that respects the injective and subjective directed
edge mappings between G-Patterns. GQT considers the following
directed edge mappings, bijective mappings, and injective-only or
surjective-only mappings. Based on bijective directed edge map-
pings, given a query 𝑄 , we generate a follow-up query 𝑄 ′ so that
𝑅𝑆 (𝑄 ′) = 𝑅𝑆 (𝑄) (the result sets are equal). To derive the follow-up
query𝑄 ′, we introduce an equivalent operator =○, which randomly
applies a bijectiveG-Pattern transformation. Based on injective-only
or surjective-only edge mappings, given a query 𝑄 , we generate a
follow-up query 𝑄 ′ so that 𝑅𝑆 (𝑄 ′) ⊇ 𝑅𝑆 (𝑄) or 𝑅𝑆 (𝑄 ′) ⊆ 𝑅𝑆 (𝑄),
that is, the follow-up query has more or fewer results (at least
equal) than the base query. To derive such comparative relations,
we introduce variant operators >○ and <○, which randomly apply
an injective-only or subjective-only transformation.

ApproachOverview. Our approach generates equivalent or vari-
ant mutation queries by applying query transformations to a base
query and further checks the expected consistency of their results.
Intuitively, our test oracle is that semantically equivalent queries
should fetch the same results while variant queries should return
with larger or smaller (at least equal) results. Figure 5 provides an
overview and examples of query transformations with injective
and surjective Graph Query Transformation (GQT). Given the base
query 𝑄 , we utilize query transformations inspired by injective
and surjective G-Patternmappings to generate mutated queries (i.e.,
𝑄
=○
1 , 𝑄 <○

2 , 𝑄 <○ =○
3). Given the operators, we can infer their result

relationships, thus the logic bugs can be reflected by checking the
consistency among the base and mutated queries.

We list the query transformations (i.e., query mutation rules) in
Table 1 with ID, name, transformation type, transformation class,
transformation description, and examples in Cypher. In terms of
transformation type, we classify them into two groups: equivalent
transformations that support operator =○ (based on bijective path
mappings) and variant transformations that support operators >○
and <○ (based on injective-only or surjective-only path mappings).

Due to the limited space, we have omitted the conditions for apply-
ing those transformations, such as the minimum number of edges
and the presence of cycles, and only listed the one-way transfor-
mation (the reverse transformation is also applicable). As for the
transformation class, we categorize graph query transformations
into three groups according to their strategies: Structure-GQT (G#)
rules, Property-GQT (H#) rules, and Non-GQT (#) rules. We next
introduce each class of query transformations in detail.

Structure-GQT (G#) Rules. This group of rules is derived from
injective and surjective path mappings we mentioned in Section 3,
which alter the graph pattern while preserving the injection or sur-
jection, or both, on the mapping between directed edge sets. One
example of Structure-GQT rules is shown in Figure 5: one equiva-
lent query𝑄 =○

1 with the G-Pattern (c:movie)<-[b]-(a:user)mutated
from base query 𝑄 with the G-Pattern (a:user)-[b]->(c:movie) by
applying the transformation based on the symmetric G-Pattern

mapping in Figure 4. Operator =○ indicates that its result should be
equal to the base query, which is not satisfied by checking the query
outputs (i.e., 620 ≠ 310), revealing a logic bug. Similarly, for every
injective and surjective G-Pattern mapping mentioned in Section 3,
we formulate their query transformation (i.e., SymmetricPattern,
UnfoldCyclicPattern, PatternPartition, AddEdgeDirection, Span-
ningSubgraph, InducedSubgraph, and ExpandPattern) accordingly
in Table 1 as a class of Structure-GQT rules.

Property-GQT (H#) Rules. This group of rules is derived from
the labeled property graph model, the basis of modern GDBMSs
we target, to enlarge the space of query transformations. Property-
GQT (H#) rules take special features such as node labels, edge types,
and their properties from the labeled property graph model and
generate injective and surjective G-Pattern mappings upon them.
We classify this group of rules also as injective and surjective Graph
Query Transformation (GQT) due to its nature of alteringG-Patterns
in graph queries. One example of Property-GQT rule is shown in
Figure 5: one query restriction 𝑄

<○
2 with the G-Pattern (a:user)-

[b:rated]->(c:movie) mutated from the base query 𝑄 by adding
the edge type (i.e., [:rated]). We identify it as query restriction
as the G-Pattern mapping is surjective-only considering the edge
type, which splits the directed edge set into two disjoint subsets (i.e.,
𝐺𝑃={{:rated},{:!rated}}) while the directed edge set of mutatedG-
Pattern is one of the subsets with [:rated] type (i.e.,𝐺𝑃 ′={:rated}).
Thus, G-Pattern restriction (<○) indicates that its result should be

Detecting Logic Bugs in Graph Database Management Systems via Injective and Surjective GraphQuery Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Illustrative List of Graph Query Transformations—Queries Colored with deletion and addition.

ID Rule Name Class Type Transformation Example (In Cypher)

01 SymmetricPattern G# Equivalent Replace graph pattern with a symmetric one match (a:movie)--(b:movie) return count(ab);
02 UnfoldCyclicPattern G# Equivalent Unfold cyclic pattern via adding predicate match (a)--(b:movie)--(ca) where a=c return count(a);
03 PatternPartition G# Equivalent Split graph pattern to disjoint sub-patterns match (a)-->(b:movie), (b:movie)-->(c) return count(a);
04 AddEdgeDirection G# Variant Add edge direction to undirected edge match (a)-->(b:movie) where b.year=2012 return count(a);
05 SpanningSubgraph G# Variant Spanning subgraph by deleting edges match (a)-->(b:movie)-->(c), (a)-->(c) return count(a);
06 InducedSubgraph G# Variant Induced subgraph by deleting vertices match (a)--(b:movie)--(c)--(d:actor) return count(a);
07 ExpandPattern G# Variant Expand graph pattern by adding nodes match (a)--(b:movie)--(c:movie)--(d) return count(a);
08 AddNodeLabel H# Variant Add node label to existing node match (a:user)--(b:movie) where not a=b return count(a);
09 AddEdgeType H# Variant Add edge type to existing edge match (a:user)-[r:rated]-(b:movie) return count(a);
10 MoveLabelPredicate H# Equivalent Move node label to the predicate match (a:user)--(b:movie) where a:user return count(a);
11 CountIdProperty H# Equivalent Count the node id property match (a:user)--(b:movie)-->(c) return count(id(a));
12 CountOtherName H# Equivalent Count other name in the same path match (a:user)--(b:movie)-->(c) return count(ac);
13 DisjointPredicate # Equivalent Split predicate into disjoint parts match (a) where a.p>0 andwith ∗ where a.q>0 count(a);
14 RedundantPredicate # Equivalent Append alway-true condition to predicate match (a:user)–(b:movie) where not a=b return count(a);
15 RenameVariables # Equivalent Rename node or edge variables match (an)--(bm:movie) where an:user return count(an);
16 AddCallWrapper # Equivalent Return results by calling the function call { match (a:user) return count(a) as x } return x;

less equal than the base query, which is satisfied to pass the test
oracle (i.e., 288 ≤ 310). We generate five Property-GQT rules in total
(i.e., AddNodeLabel, AddEdgeType, MoveLabelPredicate, CountId-
Property, CountOtherName) listed in Table 1 as the complement
of G-Pattern mappings on the labeled property graph model.

Non-GQT (#) Rules. This group of rules is derived from query
syntax or other query elements except G-Pattern. Specifically, Non-
GQT rules do not mutate the G-Pattern explicitly and does not
use G-Pattern mapping. As shown in Table 1, we create four Non-
GQT rules, namely, DisjointPredicate splits the Predicate into two
parts and applies them accordingly; RedundantPredicate appends
an always-true condition (e.g., where id(a)>=0, id() returns the
identifier) to the predicate; RenameVariables changes the variable
names; AddCallWrapper aims to execute the graph query in a call-
ing function way. We involve this group of rules in our approach to
facilitate generating diverse mutated queries by rules combination.

Rules Combination. GraphGenie supports rules combination
and iteration to generate more diverse testing queries. The equiva-
lent operator =○ can be combined with one variant operator (i.e., >○
or <○), and all operators can also be iteratively applied. For example,
in Figure 5, another query 𝑄 <○ =○

3 with the G-Pattern (a:user)-[b]-
(c:movie) and additional predicate b:rated is generated via rules
combination by usingMoveLabelPredicate bijective query trans-
formation on 𝑄

<○
2 . Given the bijective query transformation, we

identify the query equivalence and notice the unexpected inconsis-
tency (i.e., 252 ≠ 288) between 𝑄

<○
2 and 𝑄 <○ =○

3 , revealing a logic
bug. We believe rules combination and recursiveness can facilitate
generating a wider range of mutated queries.

Correctness Validation. We compare the results of the base
query𝑄 andmutated query𝑄 ′ in terms of operators (i.e., =○, >○, and
<○). When performing equivalent transformations, we can derive
the operator as =○. For variant transformations, determining the
appropriate operator (>○ or <○) requires the G-Pattern mappings
and the context of the query. For instance, consider two pairs of
query transformations using InducedSubgraph, as listed in Listing 2.
Despite both using the same query transformation, they may have

different operators depending on the semantics of the Return clause.

𝑄 ′ =

𝑄 =○, if { =○} ∈ 𝑂𝑝 ∧ { >○, <○} ∉ 𝑂𝑝

𝑄 >○, if { >○} ∈ 𝑂𝑝 ∧ { <○} ∉ 𝑂𝑝

𝑄 <○ . if { <○} ∈ 𝑂𝑝 ∧ { >○} ∉ 𝑂𝑝

(1)

Given the set of applied operators (i.e.,𝑂𝑝), as shown in Equation 1,
we define the mutated query as an equivalent query when only
applying the equivalent operator; similarly, a generalized variant
query 𝑄 >○ when only applying operator =○ and >○; a restricted
variant query 𝑄 <○ when only applying operator =○ and <○.

𝑅𝑆 (𝑄 =○) = 𝑅𝑆 (𝑄), 𝑅𝑆 (𝑄 >○) ⊇ 𝑅𝑆 (𝑄), 𝑅𝑆 (𝑄 <○) ⊆ 𝑅𝑆 (𝑄) (2)

As shown in Equation 2, the equivalent mutated query 𝑄 =○ should
share the same result set (i.e., 𝑅𝑆 ()) with its base queries 𝑄 while
variant mutated query 𝑄 >○ or 𝑄 <○ should return more or fewer
results (at least equal). If any inconsistency exists, we further verify
the suspicious queries that give inconsistent results by checking
whether they are reproducible.

Generalizability. Graph queries exhibit common patterns such
as nodes, edges, and clauses, which persist across different graph
query languages, allowing for the possibility of general graph query
transformations. Our study has identified several common graph-
matching query elements in graph query languages, including
Match, G-Pattern, Predicate, Return, and Others, which are sum-
marized in Section 2. Although graph query languages represent
graph patterns using different syntax, they consistently use vertices
and edges, making it feasible to apply universal query transforma-
tions such as SymmetricPattern and PatternPartition. Our query
transformations are based on common graph query elements, with
the goal of being compatible with most GDBMSs based on the
labeled property graph model.

Listing 2: Different Variant Operators with Same Patterns

𝑄1: MATCH (a)-[]-(b)-[]-(c) RETURN count(a);

𝑄
<○
1 : MATCH (a)-[]-(b) RETURN count(a);

𝑄2: MATCH (a)-[]-(b)-[]-(c) RETURN count(DISTINCT a);

𝑄
>○
2 : MATCH (a)-[]-(b) RETURN count(DISTINCT a);

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang, and Manuel Rigger

5 Implementation

In this section, we introduce the implementation details of Graph-
Genie, which is implemented in Python with over 2K lines of code.

GraphGenie includes four main components, namely, schema
scanner, base query generator, GQT query mutator, and bug val-
idator. The schema scanner acquires information about the testing
schema, including labels, properties, and node connectivities. This
information is then used by the base query generator with correct
syntax to construct valid base queries. The GQT query mutator
generates mutated queries by applying graph query transforma-
tions to each base query, either through a single rule or random
combinations. GraphGenie then examines the results of mutated
queries (i.e., 𝑄 =○, 𝑄 >○, 𝑄 <○) in the target GDBMS to identify po-
tential bugs. Finally, the bug validator evaluates each potential bug,
reduces faulty queries, and generates bug reports.

Schema Scanner. In GraphGenie, we collect schema informa-
tion at the beginning of GDBMS testing to assist in creating mean-
ingful queries. Specifically, GraphGenie executes a series of pre-
defined queries (e.g., using labels(), type(), keys() functions) to
fetch metadata of the target schema including labels, properties.
Such information helps GraphGenie generate base queries with
valid values. In addition, GraphGenie leverages connectivity among
nodes to avoid generating classes of queries that are guaranteed
to yield empty results. For instance, an (:user) node could never
connect to a (:genre) node in the Recommendation4 dataset, thus
GraphGenie avoids creating graph patterns like (:user)-->(:genre)
by referring to the connectivity matrix between nodes.

Base Query Generator. Generated queries are always syntacti-
cally correct and aware of the schema, aiming to exercise deeper
logic of the GDBMSs. To guarantee syntactic correctness, we fol-
lowed the official grammar of graph query languages as other works
(e.g., GDSmith [27] and Grand [55]) did. For schema awareness, us-
ing information from the schema scanner, GraphGenie generates
base queries with valid labels and properties to prevent retrieving
non-existing graph patterns, also avoiding parts of empty-results
queries by checking node connectivity.

While base queries generated by GraphGenie are effective in
identifying logic bugs in GDBMSs, there are many existing ap-
proaches that aim to generate base queries with higher efficiency
and coverage like SQLancer [44] and SQLsmith [1]. Those orthogo-
nal works can be combined with GraphGenie in a GDBMS context
to further improve the testing efficiency.

GQT Query Mutator. GraphGenie uses GQT to create mutated
queries. In theory, GraphGenie has the ability to generate unlimited
mutated queries with test oracles via rules combination. However,
we usually limit the number of mutated queries through a config-
urable parameter of GraphGenie. We also avoid rules combination
of operators >○ and <○ as the result would be uncertain.

Bug Validator. The bug validator checks the result of the base
query and mutated query. In terms of three operators, any discrep-
ancy against Equation 2 indicates a potential logic bug. GraphGenie
validates the potential bug by checking whether it is reproducible.

4https://github.com/neo4j-graph-examples/recommendations

Table 2: Information of GraphGenie Target GDBMSs

GDBMS Rank Github Stars Init Release LoC

Neo4j 1 11.2k 2007 1,241K
RedisGraph 3* 1.8k 2018 1,618K
AgensGraph 37 1.3k 2017 2,035K
TinkerPop 26 1.7k 2009 459K
JanusGraph 7 4.8k 2017 172K
HugeGraph 22 2.2k 2018 146K

Query Language Support. We implemented GraphGenie to
support two popular graph query languages (Cypher and Gremlin).
GraphGenie supports Cypher, which is the industry’s most widely
used property graph query language. For Gremlin, we adopt an
official Gremlin server plugin called Cypher for Gremlin

5 published
by OpenCypher.6 It is developed for users of Apache TinkerPop [4]
to allow querying Gremlin databases with Cypher. The translation
process converts Cypher query to an internal representation, which
is subsequently parsed by a set of rewrites to output Gremlin repre-
sentations. According to the official coverage testing report [36],
over 98% Gremlin steps and over 91% of the scenarios have been
supported. We collect the translated queries to test the incompati-
ble latest versions or other Gremlin GDBMSs that are not officially
supported by this plugin.

6 Evaluation

In this section, we answer the following research questions to assess
various important aspects of GraphGenie:
• Q1 Discovery of Unknown Bugs. How effective is GraphGenie
in discovering unknown bugs in mature GDBMSs?

• Q2 Comparison with Existing Techniques. How does Graph-
Genie’s effectiveness on GDBMS testing compare with the state-
of-the-art approaches, such as Grand [55] and GDBMeter [22]?

• Q3 GQT Contribution Analysis. To what extent do the indi-
vidual rule categories contribute to GraphGenie’s performance?

• Q4 Applicability of Detecting Performance Issues. Is Graph-
Genie also applicable to finding performance issues in GDBMSs?

Target GDBMSs. We spent most of our time testing Cypher

GDBMSs so we focus on them in the evaluation. We first selected
three top-ranking Cypher GDBMSs to evaluate GraphGenie’s ef-
fectiveness comprising Neo4j [37], RedisGraph [39], and Agens-
Graph [7]. Table 2 shows their DB-Engine Ranking [15] of GDBMSs,
GitHub stars, initial release date, and Lines of Code (LoC)7. We also
applied our approach in three Gremlin GDBMSs including Tinker-
Pop [4], JanusGraph [19], and HugeGraph [18] for comparison with
existing works to demonstrate the approach’s generality to other
graph query languages.

Table 3: Unknown Logic/Error Bugs Found by GraphGenie

Logic Bugs Internal Errors

GDBMS Unconfirmed Confirmed Fixed Fixed Total

Neo4j 0 0 2 3 5
RedisGraph 1 3 1 0 5
AgensGraph 0 0 3 0 3
Gremlin-DBs 6 0 0 0 6

Total 7 3 6 3 19

5https://github.com/opencypher/cypher-for-gremlin
6http://opencypher.org/
7Statistics on March 2023. RedisGraph rank includes the secondary database models.

https://github.com/neo4j-graph-examples/recommendations
https://github.com/opencypher/cypher-for-gremlin
http://opencypher.org/

Detecting Logic Bugs in Graph Database Management Systems via Injective and Surjective GraphQuery Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Listing 3: RedisGraph Logic Bug via Counting Property

𝑄: MATCH ()-[a]-() RETURN count((a));
// Result: 20000 Response Time: 0.20ms

𝑄 =○: MATCH ()-[a]-() RETURN count(id(a));
// Result: 39993 Response Time: 55.57ms

Listing 4: RedisGraph Logic Bug via Symmetric Path

𝑄: MATCH (a:A)-[*1..2]-(b:B) return count(1);
// Result: 204 Response Time: 0.76ms

𝑄 =○: MATCH (b:B)-[*1..2]-(a:A) return count(1);
// Result: 238 Response Time: 0.75ms

Testing Datasets. We used two standard datasets created by
Neo4j, that is, CyberSecurity8 and Recommendation9. CyberSecu-
rity includes data from active directory environment auditing and
analysis of possible attack paths using graphs, which includes 953
nodes and 4,858 relationships. Recommendation is the dataset of
movie reviews, which has 28,863 nodes and 166,261 relationships.

Experiment Infrastructure. We performed all experiments
on a personal computer with Intel(R) Core(TM) i7-9700 CPU @
3.00GHz, 16GB RAM. The OS is Ubuntu 20.04.2 LTS.

6.1 Discovering Unknown Bugs

To detect new logic bugs in GDBMSs, we intermittently tested the
latest versions of the target GDBMSs over a period of three months,
which is a typical methodology for evaluating the effectiveness of
automatic testing tools [22, 44]. We reported bugs after reducing
bug-inducing queries and checking whether the issue had already
been reported on issue trackers to avoid duplicate bug reports.

Results. Table 3 provides a summary of the number of previ-
ously unknown logic bugs and internal errors—we discuss perfor-
mance issues that we identified in Section 6.4. We classified the
unknown bugs into three disjoint categories:
- Unconfirmed bugs refer to the bugs that have been identified and
submitted but are awaiting further investigation by developers
to confirm the root cause.

- Confirmed bugs refer to the bugs that have been acknowledged
for their existence by developers but have not been fixed.

- Fixed bugs refer to the bugs that have been confirmed and patched
by the developers.

In total, we identified 19 unknown bugs10, of which 3 were con-
firmed and 9 were fixed. Next, we present several noteworthy bugs
that GraphGenie identified, categorizing them based on their root
cause through our analysis of developers’ feedback or fix commits.
We classified them into several different classes.

Incorrect Relationship Counting. Edges are essential to con-
nect nodes in graph queries. Modern GDBMSs support multiple
advanced features in the relationships/edges such as variable path

8https://github.com/neo4j-graph-examples/cybersecurity
9https://github.com/neo4j-graph-examples/recommendations
10
Gremlin queries are generated through the Cypher for Gremlin plugin. We discovered
that the plugin may lead to buggy translations, so some Gremlin bugs have been
categorized as Unconfirmed bugs.

Listing 5: Neo4j Internal Error via Mutated Variable Name

𝑄: OPTIONAL MATCH p=(n)-->()--()-->()--()--()-->()<--(n)
RETURN id(n) SKIP 2 LIMIT 1; // OK

𝑄 =○: OPTIONAL MATCH p=(a)-->()--()-->()--()--()-->()<--(a)
RETURN id(a) SKIP 2 LIMIT 1; // Exception

Listing 6: Neo4j Logic Bug via Moving Edge Type

𝑄: OPTIONAL MATCH (s1)-[s0:DIRECTED]-()<-[s2:ACTED_IN]-(s1
) RETURN count(s1); // Result: 43

𝑄 =○: OPTIONAL MATCH (s1)-[s0]-()<-[s2:ACTED_IN]-(s1) WHERE
s0:DIRECTED RETURN count(s1); // Result: 491

lengths, making it complex to count relationships when sophisti-
cated graph patterns are used.

Bug 1: Listing 3 shows one relationship counting bug11 detected
by GraphGenie using the CountIdProperty query transformation.
The return clause using the count aggregation is mutated to count
the universal node properties (e.g., id() returns the identifier), which
is expected to output the same results regarding the equivalent
transformation. We found this bug in RedisGraph, because the base
query returned 20,000, and the follow-up query returned 39,993.
The developers quickly acknowledged this bug and explained that
RedisGraph count() would miss relationships if not referenced
elsewhere in the query.

Bug 2: We found another incorrect relationship counting bug12
shown in Listing 4 by executing a pair of SymmetricPattern equiv-
alent queries. The symmetric query pair is expected to output the
same result—retrieving the graph pattern whose endpoints are (a)
and (b). The different results demonstrate a logic bug. After analyz-
ing the fix commit by the RedisGraph developers, we confirm the
root cause of this bug was the incorrect logic to stop expanding a
path upon detecting a cycle.

Unrobust Query Plan Operator - Expand(Into). In Neo4j [37],
Expand(Into) is one important operator, which exists in various
query plans. When both the start and end nodes have already been
found, Expand(Into) operator is used to find all relationships con-
necting the two nodes. We found two bugs related to this operator.

Bug 3: Listing 5 illustrates an unknown bug13 related to Ex-

pand(Into). GraphGenie applied the RenameVariables query trans-
formation to mutate the node variables in a doubly-connected loop.
With different variable names, the query execution aborted un-
expectedly and further caused one server-side exception. Neo4j
developers have fixed this bug. By analyzing the fix commit, we
found the root cause is that Expand(Into) did not handle doubly-
connected loops combined with skip and limit operations.

Bug 4: Another related logic bug14 shown in Listing 6 is detected
with the query transformationMoveLabelPredicate. We moved the
edge type [s0:directed] from the G-Pattern to the query predicate.
This transformation caused Neo4j to fail to find paths that satisfy
the predicate, revealing a logic bug.

11https://github.com/RedisGraph/RedisGraph/issues/2744
12https://github.com/RedisGraph/RedisGraph/issues/2865
13https://github.com/neo4j/neo4j/issues/12968
14https://github.com/neo4j/neo4j/issues/12991

https://github.com/neo4j-graph-examples/cybersecurity
https://github.com/neo4j-graph-examples/recommendations
https://github.com/RedisGraph/RedisGraph/issues/2744
https://github.com/RedisGraph/RedisGraph/issues/2865
https://github.com/neo4j/neo4j/issues/12968
https://github.com/neo4j/neo4j/issues/12991

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang, and Manuel Rigger

Listing 7: AgensGraph Logic Bug via Pattern Partition

𝑄: MATCH (a)-[*1..1]->(b) RETURN count(a);
// Result: 100

𝑄 =○: MATCH (a),(a)-[*1..1]->(b) RETURN count(a);
// ERROR: column "a" does not exist

Unrobust Variable-Length Expression Parsing. Variable-
length expressions (VLEs) are one common feature that allows set-
ting variable lengths between nodes for fuzzy matching in GDBMSs.

Bug 5: As shown in Listing 7, GraphGenie detects the logic bug15
in AgensGraph [7] by PatternPartition, which split the graph pat-
tern into two parts. As the split pattern does not yield additional
constraints for the query, they are considered equivalent queries.
However, parsing the VLE in the 𝑄 =○ makes the node (a) invisible
to the aggregation function, which unexpectedly caused the error.

6.2 Comparison with Existing Techniques

We sought to compare GraphGenie with state-of-the-art GDBMS
testing techniques: Grand [55] and GDBMeter [22] to investigate
how GraphGenie compares with current techniques. We analyzed
and compared the effectiveness of finding confirmed bugs among
them. We could not compare with GDSmith [27], a similar testing
technique to Grand, as its tool is not publicly available.

Comparison with Grand. Grand [55] is the state-of-the-art
approach that uses differential testing to detect logic bugs in Grem-

lin GDBMSs. The core idea behind Grand is to execute the same
queries on multiple GDBMS instances and check the consistency of
their results. We observed a significant limitation of Grand is that
it produces false alarms due to its assumption—different GDBMSs
have consistent semantic implementation towards the same syntax.
We found that this assumption does not always hold in practice.
For instance, a basic edge counting query match ()-[a]-() return
count(a) could differ between Neo4j and Memgraph [34] because
of different and intended semantics in counting undirected edges,
that is, by matching ()-[n]-()Memgraph gets the same edge twice
(two directions) while Neo4j deduplicates.

We followed the instructions provided in the Grand GitHub
repository and executed Grand to apply differential testing to Janus-
Graph [19], TinkerGraph [4], and HugeGraph [18]. We ran Grand
for five iterations, generating a total of 500 queries. We randomly
sampled 30 bugs from these queries and found that over 80% of them
were false alarms. In contrast, when using GraphGenie, we were
able to identify the same number of potential logic bugs and our
test oracle only identified bugs caused by semantic discrepancies,
ensuring that GraphGenie only reports true logic bugs.

To further investigate the false alarms, we categorized Grand’s re-
sults according to the root cause below: Many false alarms (56.66%)
were caused by unsupported syntax. For instance, for the inside()
function, HugeGraph lacks support for the boolean data type in
this function, resulting in an exception when using inside(false,
true), which caused the difference compared to other GDBMSs. In
10% of the cases, false alarms were caused by differences in the ex-
ception types across different GDBMSs (e.g., when parsing lte(-1),
IllegalArgumentException in HugeGraph and ExecutionException in

15https://github.com/bitnine-oss/agensgraph/issues/609

Listing 8: Example of GDBMeter Missed Bug

𝑄: MATCH (a)-[]-(a) RETURN count(a);
// Base Query Result: 200

MATCH (a)-[]-(a) WHERE id(a)>=1.0 RETURN count(a);
// (TLP-True) Result: 200

MATCH (a)-[]-(a) WHERE NOT id(a)>=1.0 RETURN count(a);
// (TLP-False) Result: 0

MATCH (a)-[]-(a) WHERE id(a)>=1.0 IS NULL RETURN count(a);
// (TLP-Null) Result: 0

𝑄 =○: MATCH (a)-[]-(b) WHERE a=b RETURN count(a);
// (GraphGenie) Result: 16

JanusGraph). For another 10% of the cases, false alarms were caused
by differences in the encoding across different GDBMSs. For in-
stance, when parsing the query g.e().values(’ep2’), three GDBMSs
instances gave the same output but GDBMeter classified it as bug-
inducing due to Unicode characters being represented differently
in various encodings. Some false alarms (6.66%) can occur when dif-
ferent GDBMSs have inconsistent semantics in graph queries (e.g.,
g.v().has(’vp3’,0.93463105)) may produce different results in Tin-
kerPop). In the remaining cases, we were unable to assess whether
these test cases were false alarms or true bugs. They would need
further examination by developers.

We discovered that, besides high false alarms, differential testing
tends to have missed bugs when the same incorrect answers are
returned from different GDBMSs, particularly those that utilize the
Gremlin language. This is mainly because many Gremlin GDBMSs
share a codebase inherited from Apache TinkerPop [4], which can
lead to common logic bugs in the different GDBMSs.

Comparison with GDBMeter. GDBMeter16 [22] is a recently-
proposed metamorphic testing technique for detecting bugs in
GDBMSs that uses the approach called Ternary Logic Partition-

ing [42]. Ternary Logic Partitioning was first introduced for testing
relational database systems and based on the insight that a boolean
predicate p can yield one of three possible outcomes: True, False,
or Null. A query can be divided into three distinct sub-queries that
operate on rows or intermediate results based on the conditions of
p, NOT p, and p IS NULL, respectively. A bug is detected when the
combined results of the three sub-queries do not match the result
of the original query.

Ternary Logic Partitioning (TLP) is known as a general technique
for detecting logic bugs in database systems. It covers only partial
graph query mutations on predicates that occur in GDBMSs. To
evaluate the effectiveness of our approach compared to GDBMeter
in detecting logic bugs, we used the same methodology as prior
works [41, 42], that is, to conduct a manual and best-effort analysis
to (1) identify any bugs found by GraphGenie that were overlooked
by GDBMeter, and (2) determine whether GraphGenie can detect
confirmed bugs already detected by GDBMeter. In addition, to fur-
ther validate our findings, we conducted a best-effort analysis of
the bug-inducing test cases generated by them over 24 hours.

Bugs Missed by GDBMeter. We manually analyzed all confirmed
and fixed logic bugs detected by GraphGenie and tested whether
they can be detected via Predicate Partitioning. For implementing

16We contacted the author, who kindly provided the preprint and access to the tool

https://github.com/bitnine-oss/agensgraph/issues/609

Detecting Logic Bugs in Graph Database Management Systems via Injective and Surjective GraphQuery Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2

0 2 4 6 8 10 12 14 16 18 20 22 24

GDBMeter 0 127 133.0 139.0 143.0 144 146.0 147.0 149.0 150.0 150 150 151

GraphGenie 0.0 9739.0 14965.0 18776.0 22000.0 25129.0 27971.0 30689.0 33482 35950.0 38338.0 40372.0 42609.0

0 2 4 6 8 10 12 14 16 18 20 22 24

42609
40372

38338
35950

33482
30689

27971
25129

22000
18776

14965

9739

0

GraphGenie

N
um

be
r	o
f	D
ed
up
ul
ic
at
ed
	

Bu
g-
in
du
ci
ng
	T
es
t	C
as
es

0 2 4 6 8 10 12 14 16 18 20 22 24

151150150150149147146144143139
133

127

0

GDBMeter

Tested	Time	(Hours)

Numbers	of	Deduplicated	Bug-inducing	Cases	at	Every	Two	Hours	in	24	Hours	Empirical	Evaluation
0 2 4 6 8 10 12 14 16 18 20 22 24

42609
4037238338

35950
33482

30689
27971

25129
22000

18776
14965

9739

0 1511501501501491471461441431391331270

GDBMeter GraphGenie

0 2 4 6 8 10 12 14 16 18 20 22 24

151150150150149147146144143139133127

0

Figure 6: The 24 Hours Empirical Testing Statistics.

Ternary Logic Partition, we split each base query of the confirmed
bug via adding an identity-comparison (e.g., where id(a)>0) pred-
icate supported by most GDBMSs. We inspected the results of
the base query and its ternary queries to check whether it split
into disjoint subsets. Out of 9 bugs that are applicable to Ternary
Logic Partition, GDBMeter was able to detect only 3 bugs. Listing 8
demonstrates one GDBMeter missed bug17 that GraphGenie found
by utilizing the UnfoldCyclicPattern rule to mutate the base query.
The results showed that Ternary Logic Partition does not necessar-
ily reveal inconsistency among True, False, and Null queries.

Detecting Bugs found by GDBMeter using GQT. We also tried to
detect bugs found by GDBMeter using our approach. Out of 36
confirmed or fixed bugs found by GDBMeter in GDBMSs, we notice
that 29 of them are internal errors (i.e., exceptions in Java or crashes
in C/C++) that rely on query generation rather than the test oracle,
hence those bugs are orthogonal to our approach. We can detect
all remaining 7 logic bugs found by GDBMeter using GQT. For two
logic bugs fixed in Neo4j, we next demonstrate how GraphGenie
detects them via graph query transformations.

Considering the logic bug18 found by GDBMeter, GraphGenie
mutated the base query match (n:l) where n.p starts with
ltrim(n.p) return count(n) by using the MoveLabelPredicate
transformation (i.e., delete :l and add where "l" in labels(n)). The
mutated query was expected to return the same result. However, the
count increased from 0 to 1 unexpectedly, indicating this logic bug
could also be revealed by our tool. Similarly, GraphGenie detected
another logic bug19 found by GDBMeter using the same strategy.

GDBMeter has been used to find logic bugs in GDBMSs. However,
our results show that it is limited to testing the correct handling
of predicates and does not deal with finding logic bugs in the han-
dling of graph patterns. We believe GraphGenie could be a good
complement in this direction and better improve the effectiveness.

The 24 Hours Empirical Testing. Although it is difficult to have
a fair and direct comparison between testing techniques, we con-
ducted a best-effort empirical testing comparison between GDBMe-
ter and GraphGenie to illustrate their differences.We ran GDBMeter
and GraphGenie on RedisGraph (v2.11.3, the latest version at this
time) supported by both tools for 24 hours, which is the typical and
suggested time budget for fuzzing techniques [23]. Towards a fair
comparison, both tools are running on the same dataset randomly
generated by GDBMeter. Over a 24-hour testing period, GDBMeter
discovered 1,053,128 bug-inducing cases and GraphGenie discov-
ered 884,279 bug-inducing cases. To estimate how many of the bug-
inducing test cases indicate unique bugs, we applied a best-effort

17https://github.com/bitnine-oss/agensgraph/issues/595
18https://github.com/neo4j/neo4j/issues/12887
19https://github.com/neo4j/neo4j/issues/12884

Table 2

100 200 300 400 500 600 700 800 900 1000

Non-GQT 0 5.0 10.0 20.0 30 38.0 47.0 57.0 64.0 88

Property-GQT 2.0 15.0 29.0 45.0 61.0 82.0 101.0 121 139.0 185.0

Structure-GQT 6.0 23.0 40.0 59.0 80.0 108.0 134.0 156 177.0 230.0

Bu
g-
in
du
ci
ng
	T
es
t	C
as
es

0

50

100

150

200

250

Number	of	Tested	Base	Queries	(Redisgraph	2.10.3)
100 200 300 400 500 600 700 800 900 1000

230

177
156

134

108

80
59

40
23

6

185

139
121

101
82

61
45

29
15

2

88
6457473830201050

Non-GQT Property-GQT Structure-GQT

Table 2-1

30 60 90 120 150 180 210 240 270 300

Megatron	
without	MGM

0 0.7 2.0 3.7 7 8.7 10.7 13.0 16.3 19

Megatron 8.0 19.3 30.3 47.7 61.3 76.8 93.7 105 120.0 133.7

Av
er
ag
e	
De
du
pl
ic
at
ed
	

In
co
ns
is
te
nt
	R
es
ul
ts
	P
ai
r

0

45

90

135

Number	of	Tested	Base	Queries	(30	Mutated	Queries	for	Each	Base	Query)

30 60 90 120 150 180 210 240 270 300

133.7
120.0

105.3
93.7

76.8
61.3

47.7
30.3

19.3
8.0

19.016.313.010.78.76.73.72.00.70.0

Megatron	without	MGM Megatron

Figure 7: GQT Contribution Analysis

approach to duplicate the bug-inducing cases by retaining only
one pair for each result count pair as a coarse approximation. For
both systems, they compare one base query result 𝑛 with a mutated
result𝑚 where𝑚 stands for the sum of count results of TLP queries
in GDBMeter and the count result of the mutated query in Graph-
Genie. Given two bug-inducing test cases with results (𝑛1,𝑚1) and
(𝑛2,𝑚2), they yield duplicated count results pairs when 𝑛1=𝑛2 and
𝑚1=𝑚2. We obtained 151 deduplicated bug-inducing cases for GDB-
Meter and 42,609 for GraphGenie. We believe that these numbers
likely overestimate the number of found bugs, but they give in-
sights into the relative bug-finding capabilities. Figure 6 shows
that GraphGenie found two orders of magnitude more unique bug-
inducing cases within 24 hours and kept the increasing trend after
24 hours when GDBMeter seemed to reach a peak due to limited
graph patterns.

6.3 GQT Contribution Analysis

We investigated the contribution of individual rule categories to our
approach’s overall effectiveness. As shown in Table 1, our approach
includes three groups of graph query transformations: Structure-
GQT (G#), Property-GQT (H#), Non-GQT (#). We analyzed to what
extent each group of query transformation contributes to the im-
provement of GraphGenie on GDBMS testing by comparing the
number of found bug-inducing cases. In order to conduct a fair
comparison, we chose three representative graph query equivalent
transformations for each group (i.e., 01,02,03 for G#; 10,11,12 for H#;
13,14,15 for #, as shown in Table 1), and disabled rules combina-
tion. We executed 1000 base queries with 6914 mutated queries in
RedisGraph 2.10.3, and recorded the results of bug-inducing test
cases after every hundred executions of the base queries.

The results of our contribution analysis are presented in Figure 7.
We demonstrate three groups of graph query transformations in an
accumulative way to show our improvement (i.e., Non-GQT results
only count Non-GQT rules; Property-GQT results count both Non-
GQT rules and Property-GQT rules; Structure-GQT results count all
three groups of rules). The statistics show that non-GQT rules are
effective in finding bug-inducing test cases while using GQT rules
facilitates uncovering more bug-inducing cases in testing GDBMS.
When not considering graph pattern mutations, Non-GQT rules
were only able to identify around 40% of bug-inducing test cases
compared to GraphGenie. These findings provide evidence that
our insight into mutating the G-Pattern in queries is effective in
generating more diverse mutated queries that are more likely to
uncover logic bugs.

6.4 Finding Performance Issues

Performance issues are another type of important bug in GDBMSs
that negatively affect query response times. One key challenge in

https://github.com/bitnine-oss/agensgraph/issues/595
https://github.com/neo4j/neo4j/issues/12887
https://github.com/neo4j/neo4j/issues/12884

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang, and Manuel Rigger

Listing 9: Performance issue GraphGenie Found in Neo4j

𝑄: MATCH p=(n1)--()<-[r1]-()--(r2:PostCode)--(n2)<--()
-->()-->()<-[r3:POSTCODE_IN_AREA]-(n1) RETURN n2 as X
SKIP 6 LIMIT 2; // Response Time: 4642011ms

𝑄 > : CALL { {𝑄} } RETURN X; // Response Time: 5984ms

detecting performance issues in GDBMSs is establishing a reliable
test oracle that can accurately specify the expected behavior (i.e.,
response time) of performant GDBMSs for a particular SQL query.
While we primarily sought to find logic bugs in GDBMSs, we believe
that our key approach GQT would, in principle, also be applicable
to finding performance issues.

To detect performance issues in GDBMSs, our approach reuses
graph query transformations in Table 1, but adopts new operators
to mutate the base query for a similar (=) or variant (> or <)
execution time. Similar to detecting logic bugs, given a base query
𝑄 , our performance test oracle is to check whether a mutated query
𝑄 ′ has expected execution time in terms of operators.

We use a configurable threshold 𝑇 to distinguish the similar
execution time or the unexpected deviation. Similar to existing
testing works [21, 30], we set the empirically-determined threshold
as𝑇 = = 5× considering operation = in our experiments to balance
false alarms and missed detections and it is more conservative com-
pared to 2× used in AMOBEA [30]. We follow Equation 1 to define
mutated queries with new operators to be equivalence, restriction,
or generalization in detecting performance issues. Equation 3 il-
lustrates that the base query 𝑄 and equivalent mutated query 𝑄 =
should not have a performance deviation that exceeds a factor of
5× in terms of query execution times. For variant operators, we set
the threshold as 𝑇 ≠ = 2×. Equation 4 illustrates that the variant
mutated query 𝑄 > should not be less than the half of query execu-
tion time of base query 𝑄 . while Equation 5 shows 𝑄 < should not
exceed 2× query execution time of base query 𝑄 .

𝑚𝑎𝑥 (𝑡𝑖𝑚𝑒 (𝑄), 𝑡𝑖𝑚𝑒 (𝑄 =)) ≤ 𝑚𝑖𝑛(𝑡𝑖𝑚𝑒 (𝑄), 𝑡𝑖𝑚𝑒 (𝑄 =)) ×𝑇 = (3)

𝑡𝑖𝑚𝑒 (𝑄 >) ×𝑇 ≠ ≥ 𝑡𝑖𝑚𝑒 (𝑄) (4)
𝑡𝑖𝑚𝑒 (𝑄 <) ≤ 𝑡𝑖𝑚𝑒 (𝑄) ×𝑇 ≠ (5)

We tested the capability of detecting performance issues for one
GDBMS—Neo4j. Out of 10 submitted issues, we received positive
feedback for 6 performance issues shown in Table 4 and the differ-
ence in response times is large, varying from 10× to 103×. We found
the results were encouraging as diagnosing and fixing performance
issues is often more challenging than logic bugs.

We next demonstrate two fixed performance issues that both
incur significant slowdown in Neo4j. The first performance issue20

Table 4: Performance Issues Found by GraphGenie in Neo4j

Bug ID Status Time(Q) Time(Q’) Developer Feedback

12973 Fixed 4642011ms 5984ms A fix will come with the next release
13034 Fixed 100ms 201384ms A fix will come with the next release
13010 Confirmed 77ms 12147ms Bad plan but low priority to optimize
12957 Confirmed 13933ms 22ms A suboptimal plan in old version
13003 Intended 165547ms 332ms Query plan is suboptimal but intended
13033 Intended 1402ms 16585ms Inaccurate estimated rows and bad plan

20https://github.com/neo4j/neo4j/issues/12973

Listing 10: Performance issue GraphGenie Found in Neo4j

𝑄: MATCH (s3:Computer)<--(s4:HighValue)-->(s0:Computer)
-->(s2:User)--()-->(s1:User)<--() RETURN s3 ORDER BY
id(s3) ASC SKIP 4 LIMIT 6; // Response Time: 100ms

𝑄 = : OPTIONAL {𝑄}; // Response Time: 201384ms

we show incurs 776× slowdowns in Neo4j. As shown in the List-
ing 9, the mutated query uses the calling function way of executing
the base query, which is expected to have a similar or higher ex-
ecution time compared to the base query. However, the results
showed that𝑄 > finished much faster than base query𝑄 , revealing
a less-common way of executing a Cypher query resulted in better
performance. This bug has been acknowledged as an issue in skip
clause and has been fixed in the latest Neo4j release.

Listing 10 shows a performance issue21 resulting in a suboptimal
query plan is used in optional clause that leads to unreasonable re-
sponse times. After investigation, the developer replied to the issue
stating that Neo4j picked a worse query plan due to an incorrect
assumption when using order by combined with optional.

GraphGenie may have false alarms when finding performance
issues in GDBMSs since query optimizers involve various tradeoffs
and not every query is expected to be optimized well.

7 Related Work

We briefly summarize the most relevant related work.

Testing GDBMSs. GDBMSs have been widely adopted, so their
reliability has attracted increasing attention. We briefly summarize
the state of the art, which we also already discussed throughout
the paper. GDsmith [27] leverages differential testing to find logic
bugs in Cypher-based GDBMSs. Similarly, Grand [55] leverages
differential testing to find logic bugs in Gremlin-based GDBMSs.
GDBMeter [22] leverages Ternary Logic Partitioning (TLP) [43] to
find discrepancies in handling predicate operations. Similar to TLP,
GQT is a metamorphic testing approach; however, in contrast to
TLP, we designed the rules to be specific to GDBMSs.

Detecting memory errors in DBMSs. Most previous methods for
testing DBMSs have focused on memory errors, finding which
does not require an explicit test oracle. Grey-box fuzzers, such as
AFL [49], use code coverage as guidance to mutate test cases for de-
tecting memory errors. These mutation-based fuzzers have detected
many bugs in widely-used software, such as libpng and OpenSSL.
However, for DBMSs, the mutation methods typically incur invalid
test cases due to the highly-structured SQL grammar. Squirrel [56]
uses a syntax-preserving mutation method to increase the rate of
valid test cases during mutation. Generation-based methods, such
as SQLSmith [1], DynSQL [20], and ADUSA [30], generate test
cases according to grammar. Griffin [17] uses a grammar-free test
case generation method to alleviate the human effort to construct
grammar for each tested DBMS. While these works have proposed
efficient ways to generate test cases, they have not tackled the test
oracle problem to find logic bugs.

Detecting logic bugs in DBMSs. Logic bugs, which refer to in-
correct results returned by DBMSs, are difficult to detect as they

21https://github.com/neo4j/neo4j/issues/13034

https://github.com/neo4j/neo4j/issues/12973
https://github.com/neo4j/neo4j/issues/13034

Detecting Logic Bugs in Graph Database Management Systems via Injective and Surjective GraphQuery Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

require a test oracle, a mechanism that decides whether the test
case’s result is expected. Song et al. proposed the oracle, Differential
Query Execution (DQE) [46], to detect logic bugs in GDBMS by
checking whether SQL queries with the same predicate access the
same rows. Rigger et al. proposed the oracles PQS [44], NoREC [41],
and TLP [43] to detect logic bugs in relational DBMSs by check-
ing results’ consistency of several related queries, and have found
hundreds of bugs. To generate test cases for such test oracles, SQL-
Right [26] leverages code coverage to guide the test case generation,
and QPG [5] guides the test cases toward unseen query plans aim-
ing to generate the test cases that trigger diverse behaviors. While
these approaches focus on relational DBMSs, we propose a novel
mutation strategy injective and surjective Graph Query Transfor-
mation (GQT) in the context of testing GDBMS. In this work, we
focus on the test case generation problem and propose a novel muta-
tion strategy injective and surjective Graph Query Transformation
(GQT) to detect logic bugs for GDBMSs.

Detecting performance issues. Performance issues may result in
suboptimal performance, to which DBMSs are sensitive. Existing
benchmarking suites, such as TPC-H [48], expose performance
issues by evaluating the DBMS’ performance on a set of bench-
marks. APOLLO [21] compares the execution times of a query on
two versions of a DBMS to find performance regression issues.
AMOEBA [30] compares the execution time of an equivalent pair
of queries to identify an unexpected slowdown. While GraphGenie
primarily detects logic bugs, our evaluation has demonstrated that
it can be used to find performance issues as well via GQT.

Metamorphic testing. One of the most successful methods to de-
tect logic bugs is metamorphic testing [11, 13], which generates
two semantic-comparable test cases and validates the consistency
of results. Metamorphic testing uses an input 𝐼 to a system and its
output 𝑂 to derive a new input 𝐼 ′ (and output 𝑂 ′), for which a test
oracle can be provided that checks whether a so-calledMetamorphic

Relation holds between 𝑂 and 𝑂 ′. Conceptually, GraphGenie also
belongs to metamorphic testing. Given a query 𝐼 and execution
result𝑂 , GraphGenie derives another query 𝐼 ′ via GQT and checks
the consistency of 𝑂 and 𝐼 ′’s result 𝑂 ′. Metamorphic testing has
been applied successfully in various domains, including bioinfor-
matics [12, 38], web services [9], embedded systems [24], datalog
engines [31] and compilers [25]. In this work, we propose a novel
metamorphic testing method to test GDBMSs.

Differential testing. Another line of research to detect logic bugs
is differential testing [33], which detects bugs by executing a test
case using multiple versions or instances of systems that implement
the same semantics, and any discrepancy indicates a potential bug
in one of these systems. Researchers have utilized this method to
detect bugs across various domains, such as web services [10], Java
Virtual Machine (JVM) implementations [14], compilers [53], and
network protocols [8]. Differential testing was applied to testing
DBMSs as a system called RAGS [45], which executes a query on
multiple different DBMSs and compares their results. APOLLO [21]
also applies differential testing to detect performance issues by com-
paring the execution time of the same query on different versions
of the same DBMS. However, both methods require multiple DBMS

instances to test. In contrast, GraphGenie detects logic bugs in a
single DBMS instance and has a wider application scenario.

8 Conclusion

We have presented an effective approach, called injective and surjec-
tive Graph Query Transformation (GQT), for detecting logic bugs
in GDBMSs, which we have implemented as a practical tool called
GraphGenie. Our approach leverages graph properties to generate
follow-up queries by mutating graph query patterns, resulting in
the detection of 25 bugs in mature GDBMSs with positive feedback
from the developers. Compared to existing works, GraphGenie is
free of false alarms and effectively detects previously unknown
logic bugs. Our experimental results also demonstrate that GQT
can help find more bug-inducing test cases by providing insights
into mutating graph query patterns. Additionally, GraphGenie is
scalable and can detect performance issues in GDBMSs. Overall, we
believe that GraphGenie is a practical testing tool that can improve
the reliability and robustness of GDBMSs.

Acknowledgements

We thank the anonymous reviewers for their suggestions to im-
prove the paper. This research/project is supported by the National
Research Foundation, Singapore under its Industry Alignment Fund
– Pre-positioning (IAF-PP) Funding Initiative, and Cyber Security
Agency of Singapore under its National Cybersecurity R&D Pro-
gramme (Fuzz Testing <NRF-NCR25-Fuzz-0001>). Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore and Cyber Security
Agency of Singapore.

References

[1] Sjoerd Mullender Andreas Seltenreich, Bo Tang. [n. d.]. https://github.com/anse1/
sqlsmith.

[2] Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models.
ACM Computing Surveys (CSUR) 40, 1 (2008), 1–39.

[3] AsimAnsari, Skander Essegaier, and Rajeev Kohli. 2000. Internet recommendation
systems.

[4] Apache. [n. d.]. https://tinkerpop.apache.org/.
[5] Jinsheng Ba and Manuel Rigger. 2023. Testing Database Engines via Query Plan

Guidance. In The 45th International Conference on Software Engineering (ICSE’23).
[6] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.

The oracle problem in software testing: A survey. IEEE transactions on software

engineering 41, 5 (2014), 507–525.
[7] Bitnine. [n. d.]. http://www.agensgraph.org/.
[8] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn Song.

2007. Towards Automatic Discovery of Deviations in Binary Implementations
with Applications to Error Detection and Fingerprint Generation.. In USENIX

Security Symposium, Vol. 15.
[9] Wing KwongChan, Shing Chi Cheung, and Karl RPHLeung. 2007. Ametamorphic

testing approach for online testing of service-oriented software applications.
International Journal of Web Services Research (IJWSR) 4, 2 (2007), 61–81.

[10] Peter Chapman and David Evans. 2011. Automated black-box detection of
side-channel vulnerabilities in web applications. In Proceedings of the 18th ACM

conference on Computer and communications security. 263–274.
[11] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2002. Metamorphic testing:

a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2002).

[12] Tsong Yueh Chen, Joshua WK Ho, Huai Liu, and Xiaoyuan Xie. 2009. An innova-
tive approach for testing bioinformatics programs using metamorphic testing.
BMC bioinformatics 10, 1 (2009), 1–12.

[13] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,
and Zhi Quan Zhou. 2018. Metamorphic testing: A review of challenges and
opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1–27.

https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://tinkerpop.apache.org/
http://www.agensgraph.org/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H.C. Yap, Zhenkai Liang, and Manuel Rigger

[14] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 85–99.
[15] DB-Engines. [n. d.]. https://db-engines.com/en/ranking/graph+dbms.
[16] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web

conference. 417–426.
[17] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin:

Grammar-Free DBMS Fuzzing. In Conference on Automated Software Engineering

(ASE’22).
[18] HugeGraph. [n. d.]. https://hugegraph.apache.org/.
[19] JanusGraph. [n. d.]. https://janusgraph.org/.
[20] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful Fuzzing for

Database Management Systems with Complex and Valid SQL Query Generation.
In 32st USENIX Security Symposium (USENIX Security 23).

[21] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2020.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. In Proceedings of the 46th International Conference on Very

Large Data Bases (VLDB 2020). Tokyo, Japan.
[22] Matteo Kamm. 2022. Testing Graph Databases using Predicate Partitioning. Mas-

ter’s thesis. ETH Zurich.
[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC conference on

computer and communications security. 2123–2138.
[24] Fei-Ching Kuo, Tsong Yueh Chen, and Wing K Tam. 2011. Testing embedded

software by metamorphic testing: A wireless metering system case study. In 2011

IEEE 36th Conference on Local Computer Networks. IEEE, 291–294.
[25] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-

alence modulo inputs. (2014), 216–226. https://doi.org/10.1145/2594291.2594334
[26] Yu Liang, Song Liu, and Hong Hu. 2022. Detecting Logical Bugs of DBMS with

Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security

22). USENIX Association, Boston, MA, 4309–4326.
[27] Wei Lin, Ziyue Hua, Luyao Ren, Zongyang Li, Lu Zhang, and Tao Xie. 2022. GD-

smith: Detecting Bugs in Graph Database Engines. arXiv preprint arXiv:2206.08530
(2022).

[28] Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang. 2022. Tell: log
level suggestions via modeling multi-level code block information. In Proceed-

ings of the 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis. 27–38.
[29] Jiahao Liu, Jun Zeng, Xiang Wang, and Zhenkai Liang. 2023. Learning Graph-

based Code Representations for Source-level Functional Similarity Detection.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 345–357.

[30] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic detection
of performance bugs in database systems using equivalent queries. In Proceedings

of the 44th International Conference on Software Engineering. 225–236.
[31] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.

Metamorphic testing of Datalog engines. In Proceedings of the 29th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 639–650.
[32] MarketsandMarkets. [n. d.]. Graph Database Market. https:

//www.marketsandmarkets.com/Market-Reports/graph-database-market-
126230231.html.

[33] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[34] MemGraph. [n. d.]. https://memgraph.com/.
[35] Neo4j. [n. d.]. https://neo4j.com/developer/cypher/.

[36] OpenCypher. 2019. Cypher Technology Compatibility Kit Report of Overview of
Language Coverage in Cypher-for-Gremlin. https://opencypher.github.io/cypher-
for-gremlin/test-reports/1.0.4/cucumber-html-reports/overview-features.html.

[37] Neo4j Graph Platform. [n. d.]. https://neo4j.com/.
[38] Arvind Ramanathan, Chad A Steed, and Laura L Pullum. 2012. Verification

of compartmental epidemiological models using metamorphic testing, model
checking and visual analytics. In 2012 ASE/IEEE International Conference on

BioMedical Computing (BioMedCom). IEEE, 68–73.
[39] Redis. [n. d.]. https://github.com/RedisGraph/RedisGraph.
[40] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM 40,

3 (1997), 56–58.
[41] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database

Engines via Non-Optimizing Reference Engine Construction. In Proceedings of the
2020 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (Sacramento, California,
United States) (ESEC/FSE 2020). https://doi.org/10.1145/3368089.3409710

[42] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via
query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[43] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via
Query Partitioning. Proc. ACM Program. Lang. 4, OOPSLA, Article 211 (2020).
https://doi.org/10.1145/3428279

[44] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20). USENIX Association, Banff, Alberta.
[45] Donald R Slutz. 1998. Massive stochastic testing of SQL. In VLDB, Vol. 98. Citeseer,

618–622.
[46] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei,

Hua Zhong, and Tao Huang. 2023. Testing database systems via differential
query execution. In Proceedings of IEEE/ACM International Conference on Software

Engineering (ICSE).
[47] TinkerPop. [n. d.]. https://tinkerpop.apache.org/gremlin.html.
[48] Website. 1988. TPC-H Benchmark. https://www.tpc.org/tpch/. Accessed: 2023-

03-15.
[49] Website. 2013. American Fuzzy Lop (AFL) Fuzzer. http://lcamtuf.coredump.cx/

afl/technical_details.txt. Accessed: 2023-03-15.
[50] Wikipedia. [n. d.]. Bijection, injection and surjection. https://en.wikipedia.org/

wiki/Bijection,_injection_and_surjection.
[51] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling relation-

ship strength in online social networks. In Proceedings of the 19th international

conference on World wide web. 981–990.
[52] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and

discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium

on Security and Privacy. IEEE, 590–604.
[53] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-

standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference

on Programming language design and implementation. 283–294.
[54] Jun Zengy, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng

Chua, and Zheng Leong Chua. 2022. Shadewatcher: Recommendation-guided
cyber threat analysis using system audit records. In 2022 IEEE Symposium on

Security and Privacy (SP). IEEE, 489–506.
[55] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,

Dong Wang, Wei Wang, and Jun Wei. 2022. Finding bugs in Gremlin-based
graph database systems via Randomized differential testing. In Proceedings of

the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
302–313.

[56] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wu. 2020. Squirrel: Testing database management systems with language validity
and coverage feedback. In Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security. 955–970.

https://db-engines.com/en/ranking/graph+dbms
https://hugegraph.apache.org/
https://janusgraph.org/
https://doi.org/10.1145/2594291.2594334
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html
https://memgraph.com/
https://neo4j.com/developer/cypher/
https://opencypher.github.io/cypher-for-gremlin/test-reports/1.0.4/cucumber-html-reports/overview-features.html
https://opencypher.github.io/cypher-for-gremlin/test-reports/1.0.4/cucumber-html-reports/overview-features.html
https://neo4j.com/
https://github.com/RedisGraph/RedisGraph
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3428279
https://tinkerpop.apache.org/gremlin.html
https://www.tpc.org/tpch/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

	Abstract
	1 Introduction
	2 Background
	3 Graph Pattern Mapping
	4 Approach
	5 Implementation
	6 Evaluation
	6.1 Discovering Unknown Bugs
	6.2 Comparison with Existing Techniques
	6.3 GQT Contribution Analysis
	6.4 Finding Performance Issues

	7 Related Work
	8 Conclusion
	References

