Extensible Virtual Call Integrity

Yuancheng Jiang, Gregory J. Duck, Roland H.C. Yap, Zhenkai Liang, Pinghai Yuan

ESORICS 2022

The process of selecting which implementation of a polymorphic operation (method or function) to call at run time

The process of selecting which implementation of a polymorphic operation (method or function) to call at run time

The process of selecting which implementation of a polymorphic operation (method or function) to call at run time

The process of selecting which implementation of a polymorphic operation (method or function) to call at run time

Supported Data Structure: Virtual Table/ Virtual Pointer

VPointer: the pointer points to VTable

The process of selecting which implementation of a polymorphic operation (method or function) to call at run time

Sleep

Dog VTable • VPointer: the pointer Dog::Speak() Class Dog Speak VPointer Sleep points to VTable Dog::Sleep() • VTable: the mapping Puppy VTable Class Puppy Speak VPointer Puppy::Speak() from name to method

Memory errors widely exist in all kinds of applications

Memory errors widely exist in all kinds of applications

Are virtual tables/pointers safe against memory errors?

Memory errors widely exist in all kinds of applications

Are virtual tables/pointers safe against memory errors?

⊙ Virtual Table: Read Only

Memory errors widely exist in all kinds of applications

Are virtual tables/pointers safe against memory errors?

⊙ Virtual Table: Read Only

Memory errors widely exist in all kinds of applications

Are virtual tables/pointers safe against memory errors?

⊙ Virtual Table: Read Only

Memory Error => VCall Hijiack 🗸

Memory errors widely exist in all kinds of applications

Are virtual tables/pointers safe against memory errors?

⊙ Virtual Table: Read Only

Memory Error => VCall Hijiack 🗸

Research Solution: Virtual Control Flow Integrity(VCFI)

The goal of VCFI: check the validity of each virtual call's target

The goal of VCFI: check the validity of each virtual call's target

The goal of VCFI: check the validity of each virtual call's target

The Virtual Control Flow Integrity can be defined as: c.vcall(...); $c.vptr \in Allow_C?$

The goal of VCFI: check the validity of each virtual call's target

The Virtual Control Flow Integrity can be defined as:

The goal of VCFI: check the validity of each virtual call's target

The Virtual Control Flow Integrity can be defined as: c.vcall(...); $c.vptr \in Allow_C?$

4

VCFI is a multi-trading defense: Accurate, efficient, extensible, secure, etc.

VCFI is a multi-trading defense: Accurate, efficient, **extensible**, secure, etc.

VCFI is a multi-trading defense: Accurate, efficient, **extensible**, secure, etc.

VCFI is a multi-trading defense: Accurate, efficient, **extensible**, secure, etc.

VCFI is a multi-trading defense: Accurate, efficient, **extensible**, secure, etc.

- * Sandbox
- * Type-based policy
- * High overhead

- * Sandbox
- * Type-based policy
- * High overhead

* High overhead

- * Sandbox
- * Type-based policy
- * High overhead

* High overhead

- * LTO required
- * Extensible when cross-dso but slow

- * Sandbox
- * Type-based policy
- * High overhead

* LTO required * Extensible when

cross-dso but slow

Existing works: either inefficient or limited in extensibility

- * Sandbox
- * Type-based policy
- * High overhead

* High overhead

cross-dso but slow

- Existing works: either inefficient or limited in extensibility
- ⊙ None of them are widely deployed in real applications

VCFI inherently is the membership problem
 checking whether c.vptr is in c.allowset

- VCFI inherently is the membership problem
 checking whether c.vptr is in c.allowset
- Lookup table is naive and effective, but
 o now known as limited in extensibility

- VCFI inherently is the membership problem
 checking whether c.vptr is in c.allowset
- Lookup table is naive and effective, but
 o now known as limited in extensibility
- Any good data structure suits this task?

- VCFI inherently is the membership problem
 checking whether c.vptr is in c.allowset
- Lookup table is naive and effective, but
 o now known as limited in extensibility
- Any good data structure suits this task?

Approximate Membership Query Filter (AMQ-Filter) is the space-efficient probabilistic data structure that supports approximate membership queries.

- VCFI inherently is the membership problem
 checking whether c.vptr is in c.allowset
- Lookup table is naive and effective, but
 o now known as limited in extensibility
- Any good data structure suits this task?

Approximate Membership Query Filter (AMQ-Filter) is the space-efficient probabilistic data structure that supports approximate membership queries.

Then, Why not use AMQ-Filter to implement VCFI?

Bloom Filter

• Bloom Filter is the most well-known AMQ Filter

Bloom Filter

Bloom Filter is the most well-known AMQ Filter
 O(1) time membership checking
- Bloom Filter is the most well-known AMQ Filter
 - \circ O(1) time membership checking
 - low storage requirement

- Bloom Filter is the most well-known AMQ Filter
 - \circ O(1) time membership checking
 - low storage requirement
 - \circ no false negatives

- Bloom Filter is the most well-known AMQ Filter
 - \circ O(1) time membership checking
 - low storage requirement
 - no false negatives
 - controlled and low false positive probability

- Bloom Filter is the most well-known AMQ Filter
 - \circ O(1) time membership checking
 - low storage requirement
 - no false negatives
 - controlled and low false positive probability

• VCFI Bloom Filter

- VCFI Bloom Filter:
 - input: virtual pointer
 - output: allow or block

- VCFI Bloom Filter:
 - input: virtual pointer
 - output: allow or block
 - k: the number of hashes
 - bit array: result of hashes

- VCFI Bloom Filter:
 - input: virtual pointer
 - output: allow or block
 - k: the number of hashes
 - bit array: result of hashes
 - o feature: efficient, extensible

- VCFI Bloom Filter:
 - input: virtual pointer
 - output: allow or block
 - k: the number of hashes
 - bit array: result of hashes
 - o feature: efficient, extensible

Membership Checking Policies: $B[hash_1(x)] \neq 0 \land \cdots \land B[hash_k(x)] \neq 0$

- VCFI Bloom Filter:
 - input: virtual pointer
 - output: allow or block
 - k: the number of hashes
 - bit array: result of hashes
 - o feature: efficient, extensible

Membership Checking Policies: $B[hash_1(x)] \neq 0 \land \dots \land B[hash_k(x)] \neq 0$ Only { all `1` hits in 3 tests } indicates the Valid VCall. { any `0` miss in 3 tests } indicates the Invalid VCall.

EVCFI Overview

EVCFI Overview

Static – LLVM Pass: static allowset analysis

EVCFI Overview

Static – LLVM Pass: static allowset analysis Dynamic – Runtime: updating allowset dynamically

- movabs \$SALT,%rdi # Load 64-bit SALT 1
- imul %rax,%rdi # Multiply 2

3

- xor %esi,%esi # Zero accumulator
- crc32q %rdi,%rsi # CRC32 4

Bloom Filter Lookup

- 1
- movabs \$SALT,%rdi # Load 64-bit SALT
- imul %rax,%rdi # Multiply 2
 - xor %esi,%esi # Zero accumulator
- 3 crc32q %rdi,%rsi # CRC32 4

Bloom Filter Lookup

Salted Hash Function

 $hash(salt, vptr) = crc32(salt \times vptr)$

- movabs \$SALT,%rdi 1
- imul %rax,%rdi 2
- 3

- # Load 64-bit SALT
- # Multiply
- xor %esi,%esi # Zero accumulator
- crc32q %rdi,%rsi # CRC32 4

Bloom Filter Lookup

Salted Hash Function

 $hash(salt, vptr) = crc32(salt \times vptr)$

```
mov (%rdi),%rax
                        # Load vptr
1
                        # Hash into %rsi
   . . .
2
   movabs $BLOOM, %rdx # Load Bloom base
3
   testb $0,(%rdx,%rsi)
4
   jnz .LOK
                        # Entry non-zero?
5
   ud2
                        # Invalid vptr
6
    .LOK:
7
                        # Repeat for k > 1
    . . .
8
                        # Setup parameters
    . . .
9
   callg *INDEX(%rax)
                        # Call virtualFn()
10
           VCALL Hardening
```

- movabs \$SALT,%rdi 1
- imul %rax,%rdi 2
- 3

- # Load 64-bit SALT # Multiply
- xor %esi,%esi # Zero accumulator
- crc32q %rdi,%rsi # CRC32 4

Bloom Filter Lookup

Salted Hash Function $hash(salt, vptr) = crc32(salt \times vptr)$

```
mov (%rdi),%rax
                        # Load vptr
1
                        # Hash into %rsi
  . . .
2
   movabs $BLOOM, %rdx # Load Bloom base
3
   testb $0,(%rdx,%rsi)
4
   jnz .LOK
                        # Entry non-zero?
5
   ud2
                        # Invalid vptr
6
    .LOK:
7
                        # Repeat for k > 1
    . . .
8
                        # Setup parameters
    . . .
9
   callq *INDEX(%rax) # Call virtualFn()
10
           VCALL Hardening
```

Efficiency: only 8*k instructions to complete vcall hardening

Several Security Concerns:

Several Security Concerns:

• Hash Collision (Miss Detection)

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value
 - Increasing k value

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value
 - Increasing k value
 - Using more secure hash functions

BF is inherently probabilistic

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value
 - Increasing k value
 - Using more secure hash functions
- Bloom Filter Corruption

BF is inherently probabilistic

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value
 - Increasing k value
 - Using more secure hash functions
- Bloom Filter Corruption
 - Randomized bloom base

BF is inherently probabilistic

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value
 - Increasing k value
 - Using more secure hash functions

• Randomized bloom base

BF is inherently probabilistic

• Leak salt from instructions

Several Security Concerns:

- Hash Collision (Miss Detection)
 - Adding salt value
 - Increasing k value
 - Using more secure hash functions
- Bloom Filter Corruption
 Randomized bloom base
 Eak salt from instructions
 eXecution Only Memory

BF is inherently probabilistic

O: unp	\circ to tected \circ / \circ : partially protected \circ : fully prot				tected -: :	ected -: not applicable			
VCEL	Pol	licies	Feat	ures	St	d			
V OF IS	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	\mathbf{x} alanc		
Baseline	0	0	1	×	0%	0%	0%		
MCFI	٢	٩	1	×	35.7%	40.8%	53.6%		
VTV	Ð	Ð	1	×	7.4%	4%	55.1%		
ShrinkWrap	•	•	1	×	7%	6.1%	46.8%		
LLVM	•	-	X	X	-0.2%	2.5%	2.9%		
LLVM-xDSO	•	•	×	×	3.8%	4.9%	7.7%		
eVCFI				1	1.3%	2.6%	8.5%		

O: unp	rotected (tected $\mathfrak{O}/\mathfrak{O}$: partially protected \mathfrak{O} : fully prot				ected -: not applicable			
VCEIa	Po	licies	Feat	ures	St	d			
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc		
Baseline	0	0		×	0%	0%	0%		
MCFI		•	1	×	35.7%	40.8%	53.6%		
VTV	\bullet	\bullet	1	×	7.4%	4%	55.1%		
ShrinkWrap	•	•	1	×	7%	6.1%	46.8%		
LLVM		-	X	×	-0.2%	2.5%	2.9%		
LLVM-xDSO		•	×	×	3.8%	4.9%	7.7%		
eVCFI					1.3%	2.6%	8.5%		

- VCFI Policies
 - MCFI: weakest type-based CFI-policy

O: unp	\bigcirc : unprotected \bigcirc/\bigcirc : partially			•: fully protected $-:$ not applicable				
VCEL	Pol	licies	Feat	ures	St	Static Overhead		
V OF IS	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc	
Baseline	0	0	✓ ✓	×	0%	0%	0%	
MCFI		•	1	×	35.7%	40.8%	53.6%	
VTV		\bullet	1	×	7.4%	4%	55.1%	
ShrinkWrap	•		1	×	7%	6.1%	46.8%	
LLVM	•	-	X	X	-0.2%	2.5%	2.9%	
LLVM-xDSO		•	X	×	3.8%	4.9%	7.7%	
eVCFI				1	1.3%	2.6%	8.5%	

• VCFI Policies

- MCFI: weakest type-based CFI-policy
- VTV: it does not detect the derived class attacks

O: unp	otected $\mathfrak{O}/\mathfrak{O}$: partially protected \mathfrak{O} : fully pr				tected -:	ected -: not applicable			
VCEIa	Po	licies	Feat	ures	St	atic Overhea	ıd		
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc		
Baseline	0	0	✓ ✓	×	0%	0%	0%		
MCFI		•	1	×	35.7%	40.8%	53.6%		
VTV		\bullet	1	×	7.4%	4%	55.1%		
ShrinkWrap	•		1	×	7%	6.1%	46.8%		
LLVM	•		X	×	-0.2%	2.5%	2.9%		
LLVM-xDSO	•		X	×	3.8%	4.9%	7.7%		
eVCFI					1.3%	2.6%	8.5%		

• VCFI Policies

- MCFI: weakest type-based CFI-policy
- VTV: it does not detect the derived class attacks
- LLVM: it requires global class hierarchy statically

O: unp	rotected (\bigcirc \bigcirc \bigcirc \bigcirc partially protected \bigcirc : fully protected				ected -: not applicable			
VCEIa	Po	licies	Feat	ures	St	Static Overhead			
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc		
Baseline	0	0	✓ ✓	×	0%	0%	0%		
MCFI	•	٩	1	×	35.7%	40.8%	53.6%		
VTV	\bullet	•	1	×	7.4%	4%	55.1%		
ShrinkWrap	•		1	×	7%	6.1%	46.8%		
LLVM	•	-	X	×	-0.2%	2.5%	2.9%		
LLVM-xDSO	•	•	X	×	3.8%	4.9%	7.7%		
eVCFI					1.3%	2.6%	8.5%		

• VCFI Features

• Link Time Optimization(LTO): statical class hierarchy

O: unp	otected $\mathfrak{O}/\mathfrak{O}$: partially protected \mathfrak{O} : full				ected -: not applicable			
VCEIa	Po	licies	Feat	ires	St	Static Overhea		
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc	
Baseline	0	0	✓ ✓	×	0%	0%	0%	
MCFI	•	٩	1	X	35.7%	40.8%	53.6%	
VTV	\bullet	•	1	X	7.4%	4%	55.1%	
ShrinkWrap		•	1	X	7%	6.1%	46.8%	
LLVM		-	X	X	-0.2%	2.5%	2.9%	
LLVM-xDSO	•	•	X	X	3.8%	4.9%	7.7%	
eVCFI				1	1.3%	2.6%	8.5%	

• VCFI Features

- Link Time Optimization(LTO): statical class hierarchy
- non-LTO: VCFI defense is applicable without LTO

O: unp	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc partially protected \bigcirc : fully protected \bigcirc				cected -: not applicable			
VCEIa	Po	licies	Featu	ıres	St	d		
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc	
Baseline	0	0	 ✓ 	X	0%	0%	0%	
MCFI	•	٩	1	X	35.7%	40.8%	53.6%	
VTV	\bullet	•	1	X	7.4%	4%	55.1%	
ShrinkWrap		•		X	7%	6.1%	46.8%	
LLVM		-	X	X	-0.2%	2.5%	2.9%	
LLVM-xDSO	•	•	X	X	3.8%	4.9%	7.7%	
eVCFI			1	1	1.3%	2.6%	8.5%	

• VCFI Features

- Link Time Optimization(LTO): statical class hierarchy
- non-LTO: VCFI defense is applicable without LTO
- Ad Hoc: e.g., supporting foreign language interfaces

O: unp	rotected (\bigcirc/\bigcirc : partially protected \bigcirc : fully prot				ected -: not applicable		
VCFIe	Po	licies	Feat	ures	St	Static Overhead		
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc	
Baseline	0	0	✓	×	0%	0%	0%	
MCFI	•	٩	1	×	35.7%	40.8%	53.6%	
VTV	\bullet	Ð	1	×	7.4%	4%	55.1%	
ShrinkWrap			1	×	7%	6.1%	46.8%	
LLVM		-	X	×	-0.2%	2.5%	2.9%	
LLVM-xDSO	•	•	X	×	3.8%	4.9%	7.7%	
eVCFI				1	1.3%	2.6%	8.5%	

VCFI Static Overhead LLVM does not support dynamic cases

O: unp	rotected (otected \bigcirc/\bigcirc : partially protected \bigcirc : fully pr				ected -: not applicable			
VCEL	Po	licies	Feat	ures	St	Static Overhea			
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc		
Baseline	0	0	 ✓ 	×	0%	0%	0%		
MCFI	•	٩	1	×	35.7%	40.8%	53.6%		
VTV	\bullet	•	1	×	7.4%	4%	55.1%		
ShrinkWrap	•	•	1	×	7%	6.1%	46.8%		
LLVM		-	X	×	-0.2%	2.5%	2.9%		
LLVM-xDSO		•	X	×	3.8%	4.9%	7.7%		
eVCFI			1	1	1.3%	2.6%	8.5%		

- VCFI Static Overhead
 - LLVM does not support dynamic cases
 - MCFI astar: high overhead even in low vcall program

O: unp	rotected (9/€: partially	protected	•: fully pro	tected -: :	ected -: not applicable			
VCEL	Po	licies	Feat	ures	St	Static Overhea			
V 01 15	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc		
Baseline	0	0	 ✓ 	×	0%	0%	0%		
MCFI	•	٩	1	×	35.7%	40.8%	53.6%		
VTV	\bullet	•	1	×	7.4%	4%	55.1%		
ShrinkWrap		•	1	×	7%	6.1%	46.8%		
LLVM		-	X	×	-0.2%	2.5%	2.9%		
LLVM-xDSO		•	X	×	3.8%	4.9%	7.7%		
eVCFI			1	1	1.3%	2.6%	8.5%		

- VCFI Static Overhead
 - LLVM does not support dynamic cases
 - MCFI astar: high overhead even in low vcall program
 - VTV/ShrinkWrap xalanc: high overhead
Evaluation – Overall Comparison

\bigcirc : unprotected \bigcirc/\bigcirc : partially protected \bigcirc : fully protected \neg : not applicable							
VCFIs	Policies		Features		Static Overhead		
	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc
Baseline	0	0	 ✓ 	×	0%	0%	0%
MCFI	•	•	1	×	35.7%	40.8%	53.6%
VTV	Ð	•	1	×	7.4%	4%	55.1%
ShrinkWrap	•		1	×	7%	6.1%	46.8%
LLVM	•	-	X	×	-0.2%	2.5%	2.9%
LLVM-xDSO	•		X	X	3.8%	4.9%	7.7%
eVCFI			✓ ✓	1	1.3%	2.6%	8.5%

- Limitations of existing approaches:
 - Limited VCFI policy: MCFI, VTV, LLVM
 - LTO requisite: LLVM, LLVM-xDSO
 - High overhead: MCFI, VTV, Shrinkwrap

Evaluation – Overall Comparison

\bigcirc : unprotected \bigcirc/\bigcirc : partially protected \bigcirc : fully protected \neg : not applicable								
VCFIs	Policies		Features		Static Overhead			
	Static	Dynamic	non-LTO	Ad Hoc	astar	omnetpp	xalanc	
Baseline	0	0	 ✓ 	×	0%	0%	0%	
MCFI	•	•	1	×	35.7%	40.8%	53.6%	
VTV	\bullet	\bullet	1	×	7.4%	4%	55.1%	
ShrinkWrap			1	×	7%	6.1%	46.8%	
LLVM		-	X	×	-0.2%	2.5%	2.9%	
LLVM-xDSO	•		X	×	3.8%	4.9%	7.7%	
eVCFI			✓ ✓	1	1.3%	2.6%	8.5%	

- Limitations of existing approaches:
 - Limited VCFI policy: MCFI, VTV, LLVM
 - LTO requisite: LLVM, LLVM-xDSO
 - High overhead: MCFI, VTV, Shrinkwrap

eVCFI is the first VCFI that achieves efficiency and extensibility

• FireFox – highly modular application

- FireFox highly modular application
 - 5000+ virtual tables

- FireFox highly modular application
 - 5000+ virtual tables
 - 185k+ virtual call-sites

- FireFox highly modular application
 - 5000+ virtual tables
 - 185k+ virtual call-sites
 - foreign language interfaces, e.g., Rust and C++

- FireFox highly modular application
 - 5000+ virtual tables
 - 185k+ virtual call-sites

foreign language interfaces, e.g., Rust and C++

- FireFox highly modular application
 - 5000+ virtual tables
 - 185k+ virtual call-sites

- foreign language interfaces, e.g., Rust and C++
- With high extensibility, eVCFI defense can support Firefox

- FireFox highly modular application
 - 5000+ virtual tables
 - 185k+ virtual call-sites

- foreign language interfaces, e.g., Rust and C++
- With high extensibility, eVCFI defense can support Firefox

• With high efficiency, eVCFI only incurs 1.01% slowdown

Summary

- We propose a novel Extensible-VCFI (EVCFI)
 - The first AMQ-based VCFI
- EVCFI is efficient, extensible, and secure
- EVCFI can support the Firefox, one real-world

challenging application for extensibility, which has not been supported by existing VCFIs

Thanks