
Extensible Virtual Call Integrity
Yuancheng Jiang, Gregory J. Duck, Roland H.C. Yap,

Zhenkai Liang, Pinghai Yuan

ESORICS 2022

C++ Dynamic Dispatch
The process of selecting which implementation of a
polymorphic operation (method or function) to call at run time

1

C++ Dynamic Dispatch
The process of selecting which implementation of a
polymorphic operation (method or function) to call at run time

1

Class Animal
Virtual::Speak()

Class Dog
Speak()

Dog::Speak(){ puts(“Woof”) }

C++ Dynamic Dispatch
The process of selecting which implementation of a
polymorphic operation (method or function) to call at run time

Class Animal
Virtual::Speak()

Class Dog
Speak()

Dog::Speak(){ puts(“Woof”) }

Supported Data Structure: Virtual Table/ Virtual Pointer

1

C++ Dynamic Dispatch
The process of selecting which implementation of a
polymorphic operation (method or function) to call at run time

Class Animal
Virtual::Speak()

Class Dog
Speak()

Dog::Speak(){ puts(“Woof”) }

Class Dog
VPointer

Class Puppy
VPointer

Dog VTable

Speak

Sleep

Puppy VTable

Speak

Sleep

● VPointer: the pointer
points to VTable

Supported Data Structure: Virtual Table/ Virtual Pointer

1

C++ Dynamic Dispatch
The process of selecting which implementation of a
polymorphic operation (method or function) to call at run time

Class Animal
Virtual::Speak()

Class Dog
Speak()

Dog::Speak(){ puts(“Woof”) }

Class Dog
VPointer

Class Puppy
VPointer

Dog VTable

Speak

Sleep

Puppy VTable

Speak

Sleep

Dog::Speak()

Puppy::Speak()

Dog::Sleep()

Supported Data Structure: Virtual Table/ Virtual Pointer

● VPointer: the pointer
points to VTable

● VTable: the mapping
from name to method

1

Is Virtual Call Secure?
Memory errors widely exist in
all kinds of applications

2

Is Virtual Call Secure?
Memory errors widely exist in
all kinds of applications

Are virtual tables/pointers
safe against memory errors?

2

Is Virtual Call Secure?
Memory errors widely exist in
all kinds of applications

Are virtual tables/pointers
safe against memory errors?

Virtual Table: Read Only

Dog VTable

Speak

Sleep

Puppy VTable

Speak

Sleep

Dog::Speak()

Puppy::Speak()

Dog::Sleep()

Read Only Memory

2

Is Virtual Call Secure?
Memory errors widely exist in
all kinds of applications

Are virtual tables/pointers
safe against memory errors?

Virtual Table: Read Only

Virtual Pointer: Stack/Heap

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak

Sleep

Puppy VTable

Speak

Sleep

Dog::Speak()

Puppy::Speak()

Dog::Sleep()

Read Only Memory

Dog VTable

Speak
Sleep

Evil VTable

Speak

2

Is Virtual Call Secure?
Memory errors widely exist in
all kinds of applications

Are virtual tables/pointers
safe against memory errors?

Virtual Table: Read Only

Virtual Pointer: Stack/Heap

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak

Sleep

Puppy VTable

Speak

Sleep

Dog::Speak()

Puppy::Speak()

Dog::Sleep()

Read Only Memory

Memory Error => VCall Hijiack ✓

Dog VTable

Speak
Sleep

Evil VTable

Speak

2

Is Virtual Call Secure?
Memory errors widely exist in
all kinds of applications

2

Are virtual tables/pointers
safe against memory errors?

Virtual Table: Read Only

Virtual Pointer: Stack/Heap

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak

Sleep

Puppy VTable

Speak

Sleep

Dog::Speak()

Puppy::Speak()

Dog::Sleep()

Read Only Memory

Memory Error => VCall Hijiack ✓

Dog VTable

Speak
Sleep

Evil VTable

Speak

Research Solution: Virtual Control Flow Integrity(VCFI)

Virtual Control Flow Integrity (VCFI)
The goal of VCFI: check the validity of each virtual call’s target

3

Virtual Control Flow Integrity (VCFI)
The goal of VCFI: check the validity of each virtual call’s target

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak
Sleep

Evil VTable

Bad

Allow?
Block?

3

Virtual Control Flow Integrity (VCFI)
The goal of VCFI: check the validity of each virtual call’s target

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak
Sleep

Evil VTable

Bad

Allow?
Block?

 The Virtual Control Flow Integrity can be defined as:

3

Virtual Control Flow Integrity (VCFI)
The goal of VCFI: check the validity of each virtual call’s target

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak
Sleep

Evil VTable

Bad

Allow?
Block?

 The Virtual Control Flow Integrity can be defined as:

Allow?
Block?

Membership

3

Virtual Control Flow Integrity (VCFI)
The goal of VCFI: check the validity of each virtual call’s target

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak
Sleep

Evil VTable

Bad

Allow?
Block?

 The Virtual Control Flow Integrity can be defined as:

Allow?
Block?

C.Allowset

vptr_x
vptr_y
vptr_z

Membership
Is c.vptr in?

c.vptr

3

Practical VCFI

4

Practical VCFI
 VCFI is a multi-trading defense:

Accurate, efficient, extensible, secure, etc.

4

Practical VCFI
 VCFI is a multi-trading defense:

Accurate, efficient, extensible, secure, etc.

Extensibility becomes the main challenge for practical VCFI:

4

Practical VCFI
 VCFI is a multi-trading defense:

Accurate, efficient, extensible, secure, etc.

Extensibility becomes the main challenge for practical VCFI:

libx
liby

libz

main

time
: updating allowset accordingly

Program Execution

Dynamic Linking/Loading
4

Practical VCFI
 VCFI is a multi-trading defense:

Accurate, efficient, extensible, secure, etc.

Extensibility becomes the main challenge for practical VCFI:

libx
liby

libz

main

time
: updating allowset accordingly

Program Execution

Dynamic Linking/Loading

Rust C/C++
vcall

Inter-language Compatibility

4

Practical VCFI
 VCFI is a multi-trading defense:

Accurate, efficient, extensible, secure, etc.

Extensibility becomes the main challenge for practical VCFI:

libx
liby

libz

main

time
: updating allowset accordingly

Program Execution

Dynamic Linking/Loading

Rust C/C++
vcall

Inter-language Compatibility

HotPatch

Ad-hoc Extension

C.Allowset

X.Allowset

4

Existing Works

5

Existing Works

* Sandbox
* Type-based policy
* High overhead

MCFI&RockJIT

5

Existing Works

* Sandbox
* Type-based policy
* High overhead

MCFI&RockJIT

* Unsatisfying policy
* High overhead

VTV&Shrinkwrap

5

Existing Works

* Sandbox
* Type-based policy
* High overhead

MCFI&RockJIT

* Unsatisfying policy
* High overhead

VTV&Shrinkwrap

* LTO required
* Extensible when
cross-dso but slow

LLVM-VCFI
main libx liby libz

LTO

5

Existing Works

* Sandbox
* Type-based policy
* High overhead

MCFI&RockJIT

Existing works: either inefficient or limited in extensibility

* Unsatisfying policy
* High overhead

VTV&Shrinkwrap

* LTO required
* Extensible when
cross-dso but slow

LLVM-VCFI
main libx liby libz

LTO

5

Existing Works

* Sandbox
* Type-based policy
* High overhead

MCFI&RockJIT

Existing works: either inefficient or limited in extensibility
None of them are widely deployed in real applications

* Unsatisfying policy
* High overhead

VTV&Shrinkwrap

* LTO required
* Extensible when
cross-dso but slow

LLVM-VCFI
main libx liby libz

LTO

5

Intuition
● VCFI inherently is the membership problem

○ checking whether c.vptr is in c.allowset

6

Intuition
● VCFI inherently is the membership problem

○ checking whether c.vptr is in c.allowset
● Lookup table is naive and effective, but

○ now known as limited in extensibility

6

Intuition
● VCFI inherently is the membership problem

○ checking whether c.vptr is in c.allowset

● Any good data structure suits this task?

● Lookup table is naive and effective, but
○ now known as limited in extensibility

6

Intuition
● VCFI inherently is the membership problem

○ checking whether c.vptr is in c.allowset

● Any good data structure suits this task?

● Lookup table is naive and effective, but
○ now known as limited in extensibility

Insight: Approximate Membership Query Filter
Approximate Membership Query Filter (AMQ-Filter) is the space-efficient

probabilistic data structure that supports approximate membership queries.

6

Intuition
● VCFI inherently is the membership problem

○ checking whether c.vptr is in c.allowset

● Any good data structure suits this task?

● Lookup table is naive and effective, but
○ now known as limited in extensibility

Insight: Approximate Membership Query Filter
Approximate Membership Query Filter (AMQ-Filter) is the space-efficient

probabilistic data structure that supports approximate membership queries.

Then, Why not use AMQ-Filter to implement VCFI?
6

Bloom Filter
● Bloom Filter is the most well-known AMQ Filter

7

Bloom Filter
● Bloom Filter is the most well-known AMQ Filter

○ O(1) time membership checking

7

Bloom Filter
● Bloom Filter is the most well-known AMQ Filter

○ O(1) time membership checking
○ low storage requirement

7

Bloom Filter
● Bloom Filter is the most well-known AMQ Filter

○ O(1) time membership checking
○ low storage requirement
○ no false negatives

7

Bloom Filter
● Bloom Filter is the most well-known AMQ Filter

○ O(1) time membership checking
○ low storage requirement
○ no false negatives
○ controlled and low false positive probability

7

Bloom Filter
● Bloom Filter is the most well-known AMQ Filter

○ O(1) time membership checking
○ low storage requirement
○ no false negatives
○ controlled and low false positive probability

0 0 1 0 0 0 01 1 1 1 01 1

{x, y, z}

0 01 1 01 1 0 0 1 0 0 1 0

Hash Function 1

Hash Function 2

7

Extensible VCFI Enforcement
● VCFI Bloom Filter

8

Extensible VCFI Enforcement
● VCFI Bloom Filter:

○ input: virtual pointer
○ output: allow or block

8

Extensible VCFI Enforcement
● VCFI Bloom Filter:

○ input: virtual pointer
○ output: allow or block
○ k: the number of hashes
○ bit array: result of hashes

k=3
hash functions

bit arrays

8

Extensible VCFI Enforcement
● VCFI Bloom Filter:

○ input: virtual pointer
○ output: allow or block
○ k: the number of hashes
○ bit array: result of hashes
○ feature: efficient, extensible

8

Extensible VCFI Enforcement

Membership Checking Policies:

● VCFI Bloom Filter:
○ input: virtual pointer
○ output: allow or block
○ k: the number of hashes
○ bit array: result of hashes
○ feature: efficient, extensible

8

Extensible VCFI Enforcement

Only { all `1` hits in 3 tests } indicates the Valid VCall.
{ any `0` miss in 3 tests } indicates the Invalid VCall.

Membership Checking Policies:

● VCFI Bloom Filter:
○ input: virtual pointer
○ output: allow or block
○ k: the number of hashes
○ bit array: result of hashes
○ feature: efficient, extensible

8

EVCFI Overview

9

EVCFI Overview

Static – LLVM Pass: static allowset analysis

9

EVCFI Overview

Static – LLVM Pass: static allowset analysis
Dynamic – Runtime: updating allowset dynamically

9

EVCFI Design

Bloom Filter Lookup

10

EVCFI Design

Bloom Filter Lookup

 Salted Hash Function

10

EVCFI Design

Bloom Filter Lookup

VCALL Hardening
 Salted Hash Function

10

EVCFI Design

Bloom Filter Lookup

VCALL Hardening
 Salted Hash Function

Efficiency: only 8*k instructions to complete vcall hardening

10

EVCFI Design – Security
Several Security Concerns:

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value
○ Increasing k value

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value
○ Increasing k value
○ Using more secure hash functions

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value
○ Increasing k value
○ Using more secure hash functions

● Bloom Filter Corruption

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value
○ Increasing k value
○ Using more secure hash functions

● Bloom Filter Corruption
○ Randomized bloom base

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value
○ Increasing k value
○ Using more secure hash functions

● Bloom Filter Corruption
○ Randomized bloom base

● Leak salt from instructions

11

EVCFI Design – Security
0 0 0 01 1 1

0 01 1 0 01

01 0 01 0 0

01

01

1 1

Salted Hash

Salted Hash

BF is inherently probabilistic

Several Security Concerns:

● Hash Collision (Miss Detection)
○ Adding salt value
○ Increasing k value
○ Using more secure hash functions

● Bloom Filter Corruption
○ Randomized bloom base

● Leak salt from instructions
○ eXecution Only Memory

11

Evaluation – Overall Comparison

12

Evaluation – Overall Comparison

● VCFI Policies
○ MCFI: weakest type-based CFI-policy

12

Evaluation – Overall Comparison

● VCFI Policies
○ MCFI: weakest type-based CFI-policy
○ VTV: it does not detect the derived class attacks

12

Evaluation – Overall Comparison

● VCFI Policies
○ MCFI: weakest type-based CFI-policy
○ VTV: it does not detect the derived class attacks
○ LLVM: it requires global class hierarchy statically

12

Evaluation – Overall Comparison

● VCFI Features
○ Link Time Optimization(LTO): statical class hierarchy

12

Evaluation – Overall Comparison

● VCFI Features
○ Link Time Optimization(LTO): statical class hierarchy
○ non-LTO: VCFI defense is applicable without LTO

12

Evaluation – Overall Comparison

● VCFI Features
○ Link Time Optimization(LTO): statical class hierarchy
○ non-LTO: VCFI defense is applicable without LTO
○ Ad Hoc: e.g., supporting foreign language interfaces

12

Evaluation – Overall Comparison

● VCFI Static Overhead
○ LLVM does not support dynamic cases

12

Evaluation – Overall Comparison

● VCFI Static Overhead
○ LLVM does not support dynamic cases
○ MCFI - astar: high overhead even in low vcall program

12

Evaluation – Overall Comparison

● VCFI Static Overhead
○ LLVM does not support dynamic cases
○ MCFI - astar: high overhead even in low vcall program
○ VTV/ShrinkWrap - xalanc: high overhead

12

Evaluation – Overall Comparison

● Limitations of existing approaches:
○ Limited VCFI policy: MCFI, VTV, LLVM
○ LTO requisite: LLVM, LLVM-xDSO
○ High overhead: MCFI, VTV, Shrinkwrap

12

Evaluation – Overall Comparison

eVCFI is the first VCFI that achieves efficiency and extensibility

● Limitations of existing approaches:
○ Limited VCFI policy: MCFI, VTV, LLVM
○ LTO requisite: LLVM, LLVM-xDSO
○ High overhead: MCFI, VTV, Shrinkwrap

12

Evaluation – Firefox Support
● FireFox – highly modular application

13

Evaluation – Firefox Support
● FireFox – highly modular application

○ 5000+ virtual tables

13

Evaluation – Firefox Support
● FireFox – highly modular application

○ 5000+ virtual tables
○ 185k+ virtual call-sites

13

Evaluation – Firefox Support
● FireFox – highly modular application

○ 5000+ virtual tables
○ 185k+ virtual call-sites
○ foreign language interfaces, e.g., Rust and C++

13

Evaluation – Firefox Support
● FireFox – highly modular application

○ 5000+ virtual tables
○ 185k+ virtual call-sites
○ foreign language interfaces, e.g., Rust and C++

No VCFI Support

13

Evaluation – Firefox Support
● FireFox – highly modular application

○ 5000+ virtual tables
○ 185k+ virtual call-sites
○ foreign language interfaces, e.g., Rust and C++

eVCFI Support

● With high extensibility, eVCFI defense can support Firefox

13

Evaluation – Firefox Support

● With high efficiency, eVCFI only incurs 1.01% slowdown

● FireFox – highly modular application
○ 5000+ virtual tables
○ 185k+ virtual call-sites
○ foreign language interfaces, e.g., Rust and C++

● With high extensibility, eVCFI defense can support Firefox

eVCFI Support

13

Summary

● We propose a novel Extensible-VCFI (EVCFI)

○ The first AMQ-based VCFI

● EVCFI is efficient, extensible, and secure

● EVCFI can support the Firefox, one real-world

challenging application for extensibility, which has not

been supported by existing VCFIs

Thanks

