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Supported Data Structure: Virtual Table/ Virtual Pointer

● VPointer: the pointer 
points to VTable

● VTable: the mapping 
from name to method
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The goal of VCFI: check the validity of each virtual call’s target

virtual pointer

…
…

…
stack overflow

Dog VTable

Speak
Sleep

Evil VTable

Bad

Allow?
Block?

 The Virtual Control Flow Integrity can be defined as:

Allow?
Block?

C.Allowset

vptr_x
vptr_y
vptr_z

Membership
Is c.vptr in?

c.vptr
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Accurate, efficient, extensible, secure, etc.

Extensibility becomes the main challenge for practical VCFI:

libx
liby

libz

main

time
:  updating allowset accordingly

Program Execution

Dynamic Linking/Loading

Rust C/C++
vcall

Inter-language Compatibility

HotPatch

Ad-hoc Extension

C.Allowset

X.Allowset
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Existing works: either inefficient or limited in extensibility
None of them are widely deployed in real applications
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Intuition
● VCFI inherently is the membership problem

○ checking whether c.vptr is in c.allowset

● Any good data structure suits this task?

● Lookup table is naive and effective, but
○ now known as limited in extensibility

Insight: Approximate Membership Query Filter
Approximate Membership Query Filter (AMQ-Filter) is the space-efficient 

probabilistic data structure that supports approximate membership queries.

Then, Why not use AMQ-Filter to implement VCFI?
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○ O(1) time membership checking
○ low storage requirement
○ no false negatives
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bit arrays
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Extensible VCFI Enforcement

Only { all `1` hits in 3 tests } indicates the Valid VCall.
{ any `0` miss in 3 tests } indicates the Invalid VCall.

Membership Checking Policies:

● VCFI Bloom Filter:
○ input: virtual pointer
○ output: allow or block
○ k: the number of hashes
○ bit array: result of hashes
○ feature: efficient, extensible
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EVCFI Overview

Static – LLVM Pass: static allowset analysis
Dynamic – Runtime: updating allowset dynamically
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EVCFI Design

Bloom Filter Lookup

VCALL Hardening
   Salted Hash Function

Efficiency: only 8*k instructions to complete vcall hardening  
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● With high efficiency, eVCFI only incurs 1.01% slowdown 

● FireFox – highly modular application
○ 5000+ virtual tables
○ 185k+ virtual call-sites
○ foreign language interfaces, e.g., Rust and C++

● With high extensibility, eVCFI defense can support Firefox 

eVCFI Support

13



Summary

● We propose a novel Extensible-VCFI (EVCFI)

○ The first AMQ-based VCFI

● EVCFI is efficient, extensible, and secure

● EVCFI can support the Firefox, one real-world 

challenging application for extensibility, which has not 

been supported by existing VCFIs
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